Volumetric respiratory variability as a criterion of body recovery after physical load
DOI:
https://doi.org/10.15391/prrht.2025-10(3).06Keywords:
breathing regulation, physical load,recoveryAbstract
Purpose. The aim of this study was to determine changes in volumetric respiratory variability in physically fit individuals during recovery after physical exercise.
Material & Methods. To achieve the goal with the spiroarteriocardiorhythmograph (SACR) device, 101 male athletes aged 22.3±2.4 years were examined. The procedure for studying the respiratory system included conducting measurements in a sitting position using the SACR device for 2 minutes. The initial measurement was carried out immediately before the start of training (c1), 5-7 min. After the training session, a second registration (C2) was carried out the following morning on an empty stomach. A third registration (C3) was carried out the next morning after training.
Results. Considering the received data, the changes in the TPR (L×min-1)2 and HFR (L×min–1)2 indicators, which characterize the effect of physical load, are worth noting. For TPR (L×min–1)², at c1 – 327.6 (210.3; 538.2), at c2 – 497.3 (309.8; 1036.8) and at c3 – 302.8 (179.6; 458.0), f=18.1 and p=0.000. It is noteworthy that there were no significant changes in the LFR (L×min-1)2 indicator, which characterizes low-frequency effects on breathing, which, in our opinion, is associated with reflex stimulation of sympatho-adrenal mechanisms during physical load at the level of hemodynamic support, when the role of central mechanisms is significantly reduced. The VLFR (L×min–1)2 indicator, which is associated with central effects on breathing, has a certain informative value. 5-7 minutes after physical load, its values are significantly different from the initial VLFR (L×min–1)2, at c1 – 2.0 (1.0; 3.6) vs. c2 – 3.2 (2.0; 6.8), f=4.7, p= 0.007. However, the next morning (c3) it has intermediate values that do not significantly differ from the previous ones (c1 and c2).
Conclusions. The results of the volumetric respiratory variability study suggest that TPR (L×min–1)2 and HFR (L×min–1)2 are clearly related to physical load and recovery after it, which complements information on the impact of physical activity on the respiratory system and its recovery after it.
References
Abreu, R. M. de, Porta, A., Rehder-Santos, P., Cairo, B., Sakaguchi, C. A., da Silva, C. D., Signini, É. D. F., Milan-Mattos, J. C., & Catai, A. M. (2022). Cardiorespiratory coupling strength in athletes and non-athletes. Respiratory Physiology & Neurobiology, 305, 103943. https://doi.org/10.1016/j.resp.2022.103943
Akselrod, S., Gordon, D., Madwed, J. B., Snidman, N. C., Shannon, D. C., & Cohen, R. J. (1985). Hemodynamic regulation: investigation by spectral analysis. American Journal of Physiology-Heart and Circulatory Physiology, 249(4), H867–H875. https://doi.org/10.1152/ajpheart.1985.249.4.H867
Anderson, T. M., & Ramirez, J.-M. (2017). Respiratory rhythm generation: triple oscillator hypothesis. F1000Research, 6, 139. https://doi.org/10.12688/f1000research.10193.1
Bazhora, Ya. I., & Romanchuk, O. P. (2018). Variability and Respiration Pattern of Patients with Persistent Asthma and Obesity. Ukraïnsʹkij Žurnal Medicini, Bìologìï Ta Sportu, 3(7), 74–83. https://doi.org/10.26693/jmbs03.07.074
Benítez‐Muñoz, J. A., Alcocer‐Ayuga, M., Cupeiro, R., Guisado‐Cuadrado, I., Rojo‐Tirado, M. Á., Alfaro‐Magallanes, V. M., Romero‐Parra, N., Aparecida‐Castro, E., Ramos‐Campo, D. J., Armero‐Sotillo, A., Peinado, A. B., & Benito, P. J. (2025). Ventilatory Thresholds Differences According to Aerobic Fitness Level in 1450 Males and 241 Females on Cycle‐Ergometer: A Cross‐Sectional Study. European Journal of Sport Science, 25(7). https://doi.org/10.1002/ejsc.12323
Berton, D. C., Plachi, F., James, M. D., Vincent, S. G., Smyth, R. M., Domnik, N. J., Phillips, D. B., de-Torres, J. P., Nery, L. E., O’Donnell, D. E., & Neder, J. A. (2023). Dynamic Ventilatory Reserve During Incremental Exercise: Reference Values and Clinical Validation in Chronic Obstructive Pulmonary Disease. Annals of the American Thoracic Society, 20(10), 1425–1434. https://doi.org/10.1513/AnnalsATS.202304-303OC
Birdee, G., Nelson, K., Wallston, K., Nian, H., Diedrich, A., Paranjape, S., Abraham, R., & Gamboa, A. (2023). Slow breathing for reducing stress: The effect of extending exhale. Complementary Therapies in Medicine, 73, 102937. https://doi.org/10.1016/j.ctim.2023.102937
Brack, T., Jubran, A., & Tobin, M. J. (1997). Effect of elastic loading on variational activity of breathing. American Journal of Respiratory and Critical Care Medicine, 155(4), 1341–1348. https://doi.org/10.1164/ajrccm.155.4.9105077
Brack, T., Jubran, A., & Tobin, M. J. (1998). Effect of Resistive Loading on Variational Activity of Breathing. American Journal of Respiratory and Critical Care Medicine, 157(6), 1756–1763. https://doi.org/10.1164/ajrccm.157.6.9704114
Brændholt, M., Kluger, D. S., Varga, S., Heck, D. H., Gross, J., & Allen, M. G. (2023). Breathing in waves: Understanding respiratory-brain coupling as a gradient of predictive oscillations. Neuroscience & Biobehavioral Reviews, 152, 105262. https://doi.org/10.1016/j.neubiorev.2023.105262
Bruce, R. M., Jolley, C., & White, M. J. (2019). Control of exercise hyperpnoea: Contributions from thin‐fibre skeletal muscle afferents. Experimental Physiology, 104(11), 1605–1621. https://doi.org/10.1113/EP087649
Caselli, S., di Paolo, F. M., Pisicchio, C., Pandian, N. G., & Pelliccia, A. (2015). Patterns of left ventricular diastolic function in olympic athletes. Journal of the American Society of Echocardiography, 28(2), 236–244. https://doi.org/10.1016/j.echo.2014.09.013
Castro, R. R. T. de, Lima, S. P., Sales, A. R. K., & Nóbrega, A. C. L. da. (2017). Minute-Ventilation Variability during Cardiopulmonary Exercise Test is Higher in Sedentary Men Than in Athletes. Arquivos Brasileiros de Cardiologia. https://doi.org/10.5935/abc.20170104
Castro, R. R. T., Antunes-Correa, L. M., Ueno, L. M., Rondon, M. U. P. B., Negrão, C. E., & Nobrega, A. C. L. (2010). Ventilation variability inversely correlates to ejection fraction in heart failure: Table 1–. European Respiratory Journal, 36(6), 1482–1483. https://doi.org/10.1183/09031936.00044910
Chernozub, A., Tsos, A., Olkhovyi, O., Hlukhov, I., Koval, V., & Zavizion, O. (2025). Readaptation of functional capabilities of special unit servicemen with long-term hypodynamia caused by peripheral neuromuscular system damage. Physical Rehabilitation and Recreational Health Technologies, 10(1), 9–19. https://doi.org/10.15391/prrht.2025-10(1).02
de Oliveira, D. M., Lopes, T. R., Gomes, F. S., Rashid, A., & Silva, B. M. (2023). Ventilatory response to peripheral chemoreflex and muscle metaboreflex during static handgrip in healthy humans: evidence of hyperadditive integration. Experimental Physiology, 108(7), 932–939. https://doi.org/10.1113/EP091094
del Rio, R., Marcus, N. J., & Schultz, H. D. (2013). Carotid Chemoreceptor Ablation Improves Survival in Heart Failure. Journal of the American College of Cardiology, 62(25), 2422–2430. https://doi.org/10.1016/j.jacc.2013.07.079
del Negro, C. A., Funk, G. D., & Feldman, J. L. (2018). Breathing matters. Nature Reviews Neuroscience, 19(6), 351–367. https://doi.org/10.1038/s41583-018-0003-6
Dominelli, P. B., & Molgat-Seon, Y. (2022). Sex, gender and the pulmonary physiology of exercise. European Respiratory Review, 31(163), 210074. https://doi.org/10.1183/16000617.0074-2021
Eckberg, D. L. (2000). Physiological basis for human autonomic rhythms. Annals of Medicine, 32(5), 341–349. https://doi.org/10.3109/07853890008995937
Forster, H. V., Haouzi, P., & Dempsey, J. A. (2012). Control of Breathing During Exercise. In Comprehensive Physiology (pp. 743–777). Wiley. https://doi.org/10.1002/cphy.c100045
Gujic, M., Laude, D., Houssière, A., Beloka, S., Argacha, J., Adamopoulos, D., Xhaët, O., Elghozi, J., & van de Borne, P. (2007). Differential effects of metaboreceptor and chemoreceptor activation on sympathetic and cardiac baroreflex control following exercise in hypoxia in human. The Journal of Physiology, 585(1), 165–174. https://doi.org/10.1113/jphysiol.2007.141002
Guzii, O., Mahlovanyi, A., & Romanchuk, O. (2023). Multifunctional changes in the athletes’ body during the formation of autonomic regulations’ overstrain under the influence of training load. Fizicna Reabilitacia Ta Rekreacijno-Ozdorovci Tehnologii, 8(2), 91–104. https://doi.org/10.15391/prrht.2023-8(2).03
Guzii, O., Romanchuk, A., Мahlovanyi, A., & Trach, V. (2019). Polyfunctional express-evaluation criteria of the sportsman organism state. Journal of Physical Education and Sport, 19(4), 2352–2358. https://doi.org/10.7752/jpes.2019.04356
Guzii, O., & Romanchuk, A. (2021). Post-Loading Dynamics of Beat-To-Beat Blood Pressure Variability in Highly Qualified Athletes. Fizicna Reabilitacia Ta Rekreacijno-Ozdorovci Tehnologii, 6(1), 5–14. https://doi.org/10.15391/prrht.2021-6(1).01
Harbour, E., Stöggl, T., Schwameder, H., & Finkenzeller, T. (2022). Breath Tools: A Synthesis of Evidence-Based Breathing Strategies to Enhance Human Running. Frontiers in Physiology, 13. https://doi.org/10.3389/fphys.2022.813243
Harris, K. D., Dashevskiy, T., Mendoza, J., Garcia, A. J., Ramirez, J.-M., & Shea-Brown, E. (2017). Different roles for inhibition in the rhythm-generating respiratory network. Journal of Neurophysiology, 118(4), 2070–2088. https://doi.org/10.1152/jn.00174.2017
Heck, D., McAfee, S., Liu, Y., Babajani-Feremi, A., Rezaie, R., Freeman, W., Wheless, J., Papanicolaou, A., Ruszinkó, M., Sokolov, Y., & Kozma, R. (2017). Breathing as a Fundamental Rhythm of Brain Function. Front. Neural Circuits, 10(115). https://doi.org/10.3389/fncir.2016.00115
Hoffmann, B., Flatt, A. A., Silva, L. E. V., Młyńczak, M., Baranowski, R., Dziedzic, E., Werner, B., & Gąsior, J. S. (2020). A Pilot Study of the Reliability and Agreement of Heart Rate, Respiratory Rate and Short-Term Heart Rate Variability in Elite Modern Pentathlon Athletes. Diagnostics (Basel, Switzerland), 10(10). https://doi.org/10.3390/diagnostics10100833
Jubran, A., & Tobin, M. J. (2000). Effect of Isocapnic Hypoxia on Variational Activity of Breathing. American Journal of Respiratory and Critical Care Medicine, 162(4), 1202–1209. https://doi.org/10.1164/ajrccm.162.4.9907003
Kandimalla, M., Lim, S., Thakkar, J., Dewan, S., Kang, D., In, M.-H., Jo, H. J., Jang, D. P., Nedelska, Z., Lapid, M. I., Shu, Y., Cheon-Pyung, Cogswell, P. M., Lowe, V. J., Lee, J., & Min, H.-K. (2025). Cardiorespiratory dynamics in the brain: Review on the significance of cardiovascular and respiratory correlates in functional MRI signal. NeuroImage, 306, 121000. https://doi.org/10.1016/j.neuroimage.2024.121000
Kaverinskiy, V., Chaikovsky, I., Mnevets, A., Ryzhenko, T., Bocharov, M., & Malakhov, K. (2025). Scalable Clustering of Complex ECG Health Data: Big Data Clustering Analysis with UMAP and HDBSCAN. Computation, 13(6), 144. https://doi.org/10.3390/computation13060144
Kluger, D. S., Forster, C., Abbasi, O., Chalas, N., Villringer, A., & Gross, J. (2023). Modulatory dynamics of periodic and aperiodic activity in respiration-brain coupling. Nature Communications, 14(1), 4699. https://doi.org/10.1038/s41467-023-40250-9
Koval, V., Tsos, A., Olkhovyi, O., Drobot, K., Chernozub, A., & Potop, V. (2025). Overtraining syndrome in bodybuilding and the difficulty of searching for informative biomarkers for disadaptation diagnostics. Physical Rehabilitation and Recreational Health Technologies, 10(2), 108–119. https://doi.org/10.15391/prrht.2025-10(2).06
Krohn, F., Novello, M., van der Giessen, R. S., de Zeeuw, C. I., Pel, J. J., & Bosman, L. W. (2023). The integrated brain network that controls respiration. ELife, 12. https://doi.org/10.7554/eLife.83654
Lazovic, B., Mazic, S., Suzic-Lazic, J., Djelic, M., Djordjevic-Saranovic, S., Durmic, T., Zikic, D., & Zugic, V. (2015). Respiratory adaptations in different types of sport. European Review for Medical and Pharmacological Sciences, 19(12), 2269–2274. http://www.ncbi.nlm.nih.gov/pubmed/26166653
Lin, C., & Lin, C. (2012). Work of breathing and respiratory drive in obesity. Respirology, 17(3), 402–411. https://doi.org/10.1111/j.1440-1843.2011.02124.x
LoMauro, A., & Aliverti, A. (2021). Sex and gender in respiratory physiology. European Respiratory Review, 30(162), 210038. https://doi.org/10.1183/16000617.0038-2021
Lopes, T. R., de Oliveira, D. M., Amoroso de Lima, L. A., & Silva, B. M. (2025). Breathing variability during running in athletes: The role of sex, exercise intensity and breathing reserve. Respiratory Physiology & Neurobiology, 331, 104350. https://doi.org/10.1016/j.resp.2024.104350
Malakhov, K. S. (2024). Innovative Hybrid Cloud Solutions for Physical Medicine and Telerehabilitation Research. International Journal of Telerehabilitation, 16(1). https://doi.org/10.5195/ijt.2024.6635
Malik, M., Camm, A. J., Bigger, J. T., Breithardt, G., Cerutti, S., Cohen, R. J., Coumel, P., Fallen, E. L., Kennedy, H. L., Kleiger, R. E., Lombardi, F., Malliani, A., Moss, A. J., Rottman, J. N., Schmidt, G., Schwartz, P. J., & Singer, D. H. (1996). Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. European Heart Journal, 17(3), 354–381. https://doi.org/10.1093/oxfordjournals.eurheartj.a014868
Marcus, N. J., del Rio, R., Schultz, E. P., Xia, X.-H., & Schultz, H. D. (2014). Carotid body denervation improves autonomic and cardiac function and attenuates disordered breathing in congestive heart failure. The Journal of Physiology, 592(2), 391–408. https://doi.org/10.1113/jphysiol.2013.266221
Migliaccio, G. M., Russo, L., Maric, M., & Padulo, J. (2023). Sports Performance and Breathing Rate: What Is the Connection? A Narrative Review on Breathing Strategies. Sports, 11(5), 103. https://doi.org/10.3390/sports11050103
Nery, L. E., Wasserman, K., Andrews, J. D., Huntsman, D. J., Hansen, J. E., & Whipp, B. J. (1982). Ventilatory and gas exchange kinetics during exercise in chronic airways obstruction. Journal of Applied Physiology, 53(6), 1594–1602. https://doi.org/10.1152/jappl.1982.53.6.1594
Noskin, L., Rubinskiy, A., & Romanchuk A. (2018). Indications of the Level Individual Cardiovascular and Respiratory Homeostasis Using Continuous Spiroarteriocardiorhythmography. Biomedical Journal of Scientific & Technical Research, 6(1). https://doi.org/10.26717/bjstr.2018.06.001309
Panenko, A., Babov, K., Noskin, L., Romanchuk, O., & Pivovarov, V. (2006) Spiroarteriocardiorhythmography as a multifunctional method of research of the cardiorespiratory system in rehabilitation institutions. Kyiv; Methodological recommendations of the MHU.
Parati, G., Stergiou, G. S., Bilo, G., Kollias, A., Pengo, M., Ochoa, J. E., Agarwal, R., Asayama, K., Asmar, R., Burnier, M., de La Sierra, A., Giannattasio, C., Gosse, P., Head, G., Hoshide, S., Imai, Y., Kario, K., Li, Y., Manios, E., … Mancia, G. (2021). Home blood pressure monitoring: Methodology, clinical relevance and practical application: A 2021 position paper by the Working Group on Blood Pressure Monitoring and Cardiovascular Variability of the European Society of Hypertension. Journal of Hypertension, 39(9), 1742–1767. https://doi.org/10.1097/HJH.0000000000002922
Penáz, J. (1992). Criteria for set point estimation in the volume clamp method of blood pressure measurement. Physiol Res, 41(1), 5–10. PMID: 1610779
Pelliccia, A., Caselli, S., Sharma, S., Basso, C., Bax, J. J., Corrado, D., D’Andrea, A., D’Ascenzi, F., di Paolo, F. M., Edvardsen, T., Gati, S., Galderisi, M., Heidbuchel, H., Nchimi, A., Nieman, K., Papadakis, M., Pisicchio, C., Schmied, C., Popescu, B. A., … Lancellotti, P. (2018). European Association of Preventive Cardiology (EAPC) and European Association of Cardiovascular Imaging (EACVI) joint position statement: Recommendations for the indication and interpretation of cardiovascular imaging in the evaluation of the athlete’s heart. European Heart Journal, 39(21), 1949–1969. https://doi.org/10.1093/eurheartj/ehx532
Ryan, L., Rahman, T., Strang, A., Heinle, R., & Shaffer, T. H. (2020). Diagnostic differences in respiratory breathing patterns and work of breathing indices in children with Duchenne muscular dystrophy. PloS One, 15(1), e0226980. https://doi.org/10.1371/journal.pone.0226980
Romanchuk, O. (2023). Cardiorespiratory dynamics during respiratory maneuver in athletes. Frontiers in Network Physiology, 3. https://doi.org/10.3389/fnetp.2023.1276899
Romanchuk, O. (2024). Peculiarities of cardio-respiratory relationships in qualified athletes with different types of heart rhythm regulation according to respiratory maneuver data. Frontiers in Sports and Active Living, 6. https://doi.org/10.3389/fspor.2024.1451643
Romanchuk O. (2010). Medical and pedagogical control in health physical culture. Odesa, UA: Bukaev V.V.
Romanchuk, O., & Bazhora, Y. (2018). Regulatory peculiar features of uncontrolled bronchial asthma. Journal of Education, Health and Sport, 8(1), 330–346. https://apcz.umk.pl/JEHS/article/view/5883
Romanchuk, A., & Guzii, O. (2017). Multifunctional determinants of athletes’ health. Journal of Medicine and Health Research, 2(1), 12–21. https://www.ikprress.org/index.php/JOMAHR/article/view/3314
Romanchuk, A., & Guzii, O. (2020a). Variability and pattern of spontaneous respiration in different types of cardiac rhythm regulation of highly trained athletes. International Journal of Human Movement and Sports Sciences, 8(6), 483–493. https://doi.org/10.13189/saj.2020.080622
Romanchuk, O. P., & Guziy, O. V. (2020b). Modern approaches to the objectification of the functional state of the athletes’ body during current examinations. Fizicna Reabilitacia Ta Rekreacijno-Ozdorovci Tehnologii, 5(1), 8–18. https://doi.org/10.15391/prrht.2020-5(1).02
Romanchuk, O. P., & Guzii, O. V. (2020c). Peculiarities of Changes in Respiratory Variability under the Influence of Training Load in Athletes with Cardiovascular Overstrain by Sympathetic Type. International Journal of Education and Science, 3(2), 54. https://doi.org/10.26697/ijes.2020.2.38
Romanchuk, O., Guzii, O., Mahliovanyi, A., & Smirnov, I. (2024a). Cardiorespiratory synchronization under the influence of strength endurance training. Fizicna Reabilitacia Ta Rekreacijno-Ozdorovci Tehnologii, 9(1), 25–35. https://doi.org/10.15391/prrht.2024-9(1).04
Romanchuk, O., Polianska, O., Polianskyi, I., & Yasinska, O. (2024b). Telerehabilitation. Current Opportunities and Problems of Remote Patient Monitoring. Neonatology, Surgery and Perinatal Medicine, 14(4–54), 183–190. https://doi.org/10.24061/2413-4260.XIV.4.54.2024.25
Romanchuk, O. P., Velychko, V. I., & Bazhora, Ya. I. (2019). Reactivity of cardiorespiratory system in bronchial asthma patients according to the tests with respiratory maneuvers performance. Zaporozhye Medical Journal, 0(4), 449–457. https://doi.org/10.14739/2310-1210.2019.4.173191
Shams, S., LeVan, P., & Chen, J. J. (2021). The neuronal associations of respiratory-volume variability in the resting state. NeuroImage, 230, 117783. https://doi.org/10.1016/j.neuroimage.2021.117783
Sikora, M., Mikołajczyk, R., Łakomy, O., Karpiński, J., Żebrowska, A., Kostorz-Nosal, S., & Jastrzębski, D. (2024). Influence of the breathing pattern on the pulmonary function of endurance-trained athletes. Scientific Reports, 14(1), 1113. https://doi.org/10.1038/s41598-024-51758-5
Silva, T. M., Aranda, L. C., Paula-Ribeiro, M., Oliveira, D. M., Medeiros, W. M., Vianna, L. C., Nery, L. E., & Silva, B. M. (2018). Hyperadditive ventilatory response arising from interaction between the carotid chemoreflex and the muscle mechanoreflex in healthy humans. Journal of Applied Physiology, 125(1), 215–225. https://doi.org/10.1152/japplphysiol.00009.2018
Tipton, M. J., Harper, A., Paton, J. F. R., & Costello, J. T. (2017). The human ventilatory response to stress: rate or depth? The Journal of Physiology, 595(17), 5729–5752. https://doi.org/10.1113/JP274596
van den Aardweg, J. G., & Karemaker, J. M. (1991). Respiratory variability and associated cardiovascular changes in adults at rest. Clinical Physiology, 11(2), 95–118. https://doi.org/10.1111/j.1475-097X.1991.tb00103.x
van den Bosch, O. F. C., Alvarez-Jimenez, R., de Grooth, H.-J., Girbes, A. R. J., & Loer, S. A. (2021). Breathing variability—implications for anaesthesiology and intensive care. Critical Care, 25(1), 280. https://doi.org/10.1186/s13054-021-03716-0
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Autors

This work is licensed under a Creative Commons Attribution 4.0 International License.