Effectiveness of Cold Compression Therapy versus Multi-Waved Locked System Laser on Breast Cancer-Related Lymphoedema: Randomized Controlled Trial

Authors

DOI:

https://doi.org/10.15391/prrht.2025-10(2).01

Keywords:

Breast Cancer-related Lymphoedema, Cold Compression Therapy, Multi-waved Locked System Laser, Lymphoscintigraphy

Abstract

Purpose. This study aimed to compare the effectiveness of Cold Compression Therapy and Multi-Waved Locked System Laser on lymphatic flow, volumetric measurements, and quality of life in breast cancer-related lymphoedema patients. Breast cancer-related lymphoedema is a long-term health problem that often causes pain and disability and interferes with daily activities. It may occur after treatment for breast cancer by surgery and radiation therapy. If left untreated, it can have long-term medical and psychological consequences for patients.

Material & Methods. Sixty-six females with breast cancer-related lymphoedema, with a mean age of 37.4 ± 5.39 years, participated in the study. Subjects were randomly divided into three equal groups using simple randomization via the closed-envelope technique. Group A, consisting of twenty-two female patients, received class 4 multi-wave locked system laser and conventional treatment. Group B, also composed of twenty-two female patients, received cold compression therapy and conventional treatment. Group C, the control group, received conventional treatment only. The three groups were assessed using lymphoscintigraphy for lymphatic flow, measuring tape for limb volume, and the Lymphoedema Life Impact Scale (LLIS) for health-related quality of life assessment. Assessments were conducted before and after treatment.

Results. The results indicated that Group B showed statistically significant improvement over Group A in lymphoscintigraphy (p<0.001), limb volume (p<0.001), and LLIS questionnaire (p<0.001). Group B also showed statistically significant improvement over Group C in lymphoscintigraphy (p<0.001), limb volume (p<0.001), and LLIS questionnaire (p<0.001). However, there was no statistically significant difference between Group A and Group C.

Conclusions. Cold compression therapy significantly improved limb volume and circumference, lymphatic flow, and health-related quality of life in patients with unilateral breast cancer-related lymphoedema compared to the multi-wave locked system laser and conventional treatment.

References

Alayat, M., Elsoudany, A., & Ali, M. (2017). Efficacy of multi-wave locked system laser on pain and function in patients with chronic neck pain: A randomized placebo-controlled trial. Photomedicine and Laser Surgery, 35(8), 450–455. https://doi.org/10.1089/pho.2017.4292

Alvarez, G., Zhao, K., Kosiba, W., & Johnson, J. (2006). Relative roles of local and reflex components in cutaneous vasoconstriction during human skin cooling. Journal of Applied Physiology, 100(6), 2083-2088. https://doi.org/10.1152/japplphysiol.01071.2005

Anton, M., Bensadoun, R., & Billard, C. (2021). Place of PBM for cancer patients with vulvovaginal xerosis, atrophy, stenosis, or fibrosis. In Book of Abstracts (p. 33). https://doi.org/10.1136/ijgc-2021-ESGO.33

Askary, Z. M., & Elshazly, M. (2022). Addition of local cryotherapy for treatment of post-mastectomy lymphedema. Lymphology, 55(2), 70-76. https://doi.org/10.2458/lymph.5269

Assis, L., Moretti, A., Abrahão, T., de Souza, H., Hamblin, M., & Parizotto, N. (2013). Low-level laser therapy (808 nm) contributes to muscle regeneration and prevents fibrosis in rat tibialis anterior muscle after cryolesion. Lasers in Medical Science, 28, 947-955. https://doi.org/10.1007/s10103-012-1183-3

Baxter, G., Liu, L., Tumilty, S., Petrich, S., Chapple, C., & Anders, J. (2018). Low-level laser therapy for the management of breast cancer-related lymphedema: A randomized controlled feasibility study. Lasers in Surgery and Medicine, 50(9), 924–932. https://doi.org/10.1002/lsm.22947

Bensadoun, R., Epstein, J., Nair, R., Barasch, A., Raber‐Durlacher, J. E., Migliorati, C., et al. (2020). Safety and efficacy of photobiomodulation therapy in oncology: A systematic review. Cancer Medicine, 9(22), 8279-8300. https://doi.org/10.1002/cam4.3582

Borman, P., Yaman, A., Yasrebi, S., İnanlı, A., & Dönmez, A. (2022). Combined complete decongestive therapy reduces volume and improves quality of life and functional status in patients with breast cancer-related lymphedema. Clinical Breast Cancer, 22(3), e270-e277. https://doi.org/10.1016/j.clbc.2021.08.005

Chau, A. (2022). Laser treatment of a case of lower leg lymphoedema. Lymph Exchange, 26-28. https://doi.org/10.1016/j.jphotobiol.2015.08.003

Cheng, M., Chang, D., & Patel, K. (2021). Principles and practice of lymphedema surgery. Elsevier Health Sciences. https://doi.org/10.1016/B978-0-323-69418-6.00001-2

Cheng, M., Pappalardo, M., Lin, C., Kuo, C., Lin, C., & Chung, K. (2018). Validity of the novel Taiwan lymphoscintigraphy staging and correlation of Cheng lymphedema grading for unilateral extremity lymphedema. Annals of Surgery, 268(3), 513-525. https://doi.org/10.1097/SLA.0000000000002917

Cialdai, F., Landini, I., Capaccioli, S., Nobili, S., Mini, E., Lulli, M., & Monici, M. (2015). In vitro study on the safety of near-infrared laser therapy in its potential application as postmastectomy lymphedema treatment. Journal of Photochemistry and Photobiology B: Biology, 151, 285–296. https://doi.org/10.1016/j.jphotobiol.2015.08.003

Çinar, Y., Şenyol, A., & Duman, K. (2001). Blood viscosity and blood pressure: Role of temperature and hyperglycemia. American Journal of Hypertension, 14(5), 433-438. https://doi.org/10.1016/S0895-7061(00)01260-701260-7)

Coriddi, M., Kim, L., McGrath, L., Encarnacion, E., Brereton, N., Shen, Y., et al. (2022). Accuracy, sensitivity, and specificity of the LLIS and ULL27 in detecting breast cancer-related lymphedema. Annals of Surgical Oncology, 29, 438-445. https://doi.org/10.1245/s10434-021-10469-1

Földi, E., & Földi, M. (2011). Manual lymph drainage (Földi method). In Lymphedema: A Concise Compendium of Theory and Practice (pp. 237-243). London: Springer London. https://doi.org/10.1007/978-0-85729-567-5_28

García-Manso, J., Rodríguez-Matoso, D., Rodríguez-Ruiz, D., Sarmiento, S., De Saa, Y., & Calderón, J. (2011). Effect of cold-water immersion on skeletal muscle contractile properties in soccer players. American Journal of Physical Medicine & Rehabilitation, 90(5), 356-363. https://doi.org/10.1097/PHM.0b013e31820ff352

Ghanta, S., Cuzzone, D., Torrisi, J., Albano, N., Joseph, W., Savetsky, I., et al. (2015). Regulation of inflammation and fibrosis by macrophages in lymphedema. American Journal of Physiology-Heart and Circulatory Physiology, 308(9), H1065-H1077. https://doi.org/10.1152/ajpheart.00598.2014

Gworys, K., Gasztych, J., Puzder, A., Gworys, P., & Kujawa, J. (2012). Influence of various laser therapy methods on knee joint pain and function in patients with knee osteoarthritis. Ortopedia Traumatologia Rehabilitacja, 14, 262–277. https://doi.org/10.5604/15093492.1002257

Hou, J., Zhang, H., Yuan, X., Li, J., Wei, Y., & Hu, S. (2008). In vitro effects of low-level laser irradiation for bone marrow mesenchymal stem cells: Proliferation, growth factors secretion and myogenic differentiation. Lasers in Surgery and Medicine: The Official Journal of the American Society for Laser Medicine and Surgery, 40(10), 726-733. https://doi.org/10.1002/lsm.20724

Jan, Y. (2020). The effects of local cooling rates on perfusion of sacral skin under externally applied pressure in people with spinal cord injury: An exploratory study. Spinal Cord, 58(4), 476-483. https://doi.org/10.1038/s41393-019-0378-x

Jang, D., Song, D., Chang, E., & Jeon, J. (2016). Anti-inflammatory and lymphangiogenetic effects of low-level laser therapy on lymphedema in an experimental mouse tail model. Lasers in Medical Science, 31, 289-296. https://doi.org/10.1007/s10103-015-1854-y

Júnior, A., Vieira, B., de Andrade, L., & Aarestrup, F. (2009). Low-level laser therapy increases transforming growth factor-β2 expression and induces apoptosis of epithelial cells during the tissue repair process. Photomedicine and Laser Surgery, 27(2), 303-307. https://doi.org/10.1089/pho.2008.2307

Karu, T. (2007). Ten lectures on basic science of laser phototherapy. Prima Books. https://doi.org/10.1007/978-1-4020-6344-2

Keast, D., Despatis, M., Allen, J., & Brassard, A. (2015). Chronic oedema/lymphedema: Under recognized and under treated. International Wound Journal, 12, 328–333. https://doi.org/10.1111/iwj.12224

Khanna, A., Gougoulias, N., & Maffulli, N. (2008). Intermittent pneumatic Compression in fracture and soft-tissue injuries healing. British Medical Bulletin, 88, 147–156. https://doi.org/10.1093/bmb/ldn024

Khoshnevis, S., Craik, N., & Diller, K. (2015). Cold-induced vasoconstriction may persist long after cooling ends: An evaluation of multiple cryotherapy units. Knee Surgery, Sports Traumatology, Arthroscopy, 23(9), 2475–2483. https://doi.org/10.1007/s00167-014-2911-y

Kim, Y., Hwang, J., Bae, J., & Choi, J. (2019). Predictive value of lymphoscintigraphy in patients with breast cancer-related lymphedema undergoing complex decongestive therapy. Breast Cancer Research and Treatment, 173, 735-741. https://doi.org/10.1007/s10549-018-5041-2

Koc, M., Tez, M., Yoldaş, Ö., Dizen, H., & Göçmen, E. (2006). Cooling for the reduction of postoperative pain: Prospective randomized study. Hernia, 10, 184-186. https://doi.org/10.1007/s10029-005-0062-2

Lasinski, B., McKillip, K., Squire, D., Austin, M., Smith, K., Wanchai, A., et al. (2012). A systematic review of the evidence for complete decongestive therapy in the treatment of lymphedema from 2004 to 2011. PM&R, 4(8), 580–601. https://doi.org/10.1016/j.pmrj.2012.05.003

Leff, D., Nortley, M., Dang, V., & Bhutiani, R. (2007). The effect of local cooling on pain perception during infiltration of local anaesthetic agents: A prospective randomised controlled trial. Anaesthesia, 62(7), 677-682. https://doi.org/10.1111/j.1365-2044.2007.05056.x

Mahmood, D., Ahmad, A., Sharif, F., & Arslan, S. (2022). Clinical application of low-level laser therapy (Photo-biomodulation therapy) in the management of breast cancer-related lymphedema: A systematic review. BMC Cancer, 22(1), 937. https://doi.org/10.1186/s12885-022-10021-8

Mayrovitz, H., & Yzer, J. (2017). Local skin cooling as an aid to the management of patients with breast cancer related lymphedema and fibrosis of the arm or breast. Lymphology, 50, 56–66. https://doi.org/10.2458/lymph.v50i2.4054

Mayrovitz, J., & Cassard, X. (2014). Cryotherapy with dynamic intermittent Compression for analgesia after anterior cruciate ligament reconstruction: Preliminary study. Orthopaedics & Traumatology: Surgery & Research, 100, 309–312. https://doi.org/10.1016/j.otsr.2014.01.005

McGuire, D., & Hendricks, S. (2006). Incidences of frostbite in arthroscopic knee surgery postoperative cryotherapy rehabilitation. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 22(10), 1141.e1. https://doi.org/10.1016/j.arthro.2006.06.001

Mendes, I., Ribeiro, J., Lourini, L., Salvador, M., de Carvalho, A., Buzanello, M., et al. (2022). Cryotherapy in anterior cruciate ligamentoplasty pain: A scoping review. Therapeutic Hypothermia and Temperature Management, 12(4), 183-190. https://doi.org/10.1089/ther.2022.0001

Mirkin, G. (2014). Why ice delays recovery. DrMirkin.com. https://doi.org/10.1016/j.jphotobiol.2015.08.003

Moseley, A., Carati, C., & Piller, N. (2007). A systematic review of common conservative therapies for arm lymphoedema secondary to breast cancer treatment. Annals of Oncology, 18(4), 639-646. https://doi.org/10.1093/annonc/mdl397

Moskal, A., Kita, J., Dakowicz, A., Minarowska, S., Moskal, D., Hojna, B., et al. (2015). The influence of Multiwave Locked System (MLS) laser therapy on clinical features, microcirculatory abnormalities and selected modulators of angiogenesis in patients with Raynaud’s phenomenon. Clinical Rheumatology, 34, 489–496. https://doi.org/10.1007/s10067-014-2847-2

Ojeh, N., Bharatha, A., Gaur, U., & Forde, A. (2020). Keloids: Current and emerging therapies. Scars, Burns & Healing, 6, 2059513120940499. https://doi.org/10.1177/2059513120940499

Pappalardo, M., Starnoni, M., Franceschini, G., Baccarani, A., & De Santis, G. (2021). Breast cancer-related lymphedema: Recent updates on diagnosis, severity and available treatments. Journal of Personalized Medicine, 11(5), 402. https://doi.org/10.3390/jpm11050402

Park, B., & Kim, S. (2013). Cooling the skin: Understanding a specific cutaneous thermosensation. Journal of Lifestyle Medicine, 3(2), 91. https://doi.org/10.15280/jlm.2013.3.2.91

Patel, K., Lin, C., & Cheng, M. (2015). A prospective evaluation of lymphedema-specific quality-of-life outcomes following vascularized lymph node transfer. Annals of Surgical Oncology, 22, 2424-2430. https://doi.org/10.1245/s10434-014-4276-3

Peters, F., Heussen, N., Herbstmann, J., Möhlhenrich, S., Bock, A., Kniha, K., et al. (2021). Evaluation of the optimal cooling temperature for the face measured by the tissue perfusion during hilotherapy using laser Doppler spectrophotometry. Scientific Reports, 11(1), 9805. https://doi.org/10.1038/s41598-021-89313-1

Rashkovska, A., Trobec, R., Avbelj, V., & Veselko, M. (2014). Knee temperatures measured in vivo after arthroscopic ACL reconstruction followed by cryotherapy with gel-packs or computer controlled heat extraction. Knee Surgery, Sports Traumatology, Arthroscopy, 22, 2048-2056. https://doi.org/10.1007/s00167-013-2605-x

Rebegea, L., Firescu, D., Dumitru, M., & Anghel, R. (2015). The incidence and risk factors for occurrence of arm lymphedema after treatment of breast cancer. Chirurgia, 110, 33–37. https://doi.org/10.21614/chirurgia.110.1.33

Rezende, M., Marsengo, A., Apolinário, A., Ferreira, V., & de Guirro, E. (2017). Correlation between upper limb volume and arterial and venous blood flow velocity in lymphedema secondary to breast cancer treatment. Journal of Manipulative and Physiological Therapeutics, 40, 241–245. https://doi.org/10.1016/j.jmpt.2017.02.002

Rivlin, M., King, M., Kruse, R., & Ilyas, A. (2014). Frostbite in an adolescent football player: A case report. Journal of Athletic Training, 49(1), 97-101. https://doi.org/10.4085/1062-6050-48.6.19

Rockson, S. (2018). Lymphedema after breast cancer treatment. New England Journal of Medicine, 379, 1937–1944. https://doi.org/10.1056/nejmcp1803290

Rodríguez, M., Almeida, M., Martín, J., Anllo, M., & Sánchez, E. (2020). Changes in indocyanine green lymphography patterns after physical treatment in secondary upper limb lymphedema. Journal of Clinical Medicine, 9, 306. https://doi.org/10.3390/jcm9020306

Saygun, I., Karacay, S., Serdar, M., Ural, A., Sencimen, M., & Kurtis, B. (2008). Effects of laser irradiation on the release of basic fibroblast growth factor (bFGF), insulin-like growth factor-1 (IGF-1), and receptor of IGF-1 (IGFBP3) from gingival fibroblasts. Lasers in Medical Science, 23(2), 211-215. https://doi.org/10.1007/s10103-007-0454-6

Scialoia, D., & Swartzendruber, A. (2020). The RICE protocol is a myth: A review and recommendations. The Sport Journal, 19. https://doi.org/10.1016/j.jphotobiol.2015.08.003

Voets, T., Droogmans, G., Wissenbach, U., Janssens, A., Flockerzi, V., & Nilius, B. (2004). The principle of temperature-dependent gating in cold-and heat-sensitive TRP channels. Nature, 430(7001), 748-754. https://doi.org/10.1038/nature02732

Vrieze, T., Nevelsteen, I., Thomis, S., Gebruers, N., & Devoogdt, N. (2020). What are the economic burden and costs associated with the treatment of breast cancer-related lymphoedema? A systematic review. Supportive Care in Cancer, 28, 439–449. https://doi.org/10.1007/s00520-019-05169-4

Weiss, J., & Daniel, T. (2018). Validation of the lymphedema life impact scale version 2: A condition-specific measurement tool for persons with lymphedema. Rehabilitation Oncology, 36(1), 28-36. https://doi.org/10.1097/01.REO.0000000000000086

Wernicke, A., Shamis, M., Sidhu, K., Turner, B., Goltser, Y., Khan, I., et al. (2013). Complication rates in patients with negative axillary nodes 10 years after local breast radiotherapy after either sentinel lymph node dissection or axillary clearance. American Journal of Clinical Oncology, 36(1), 12–19. https://doi.org/10.1097/COC.0b013e31824b4b5b

Williams, A., & Whitaker, J. (2015). Measuring Change in limb volume to evaluate lymphoedema treatment outcome. EWMA Journal, 15(1). https://doi.org/10.1016/j.jphotobiol.2015.08.003

Wiser, I., Mehrara, B., Coriddi, M., Kenworthy, E., Cavalli, M., Encarnacion, E., et al. (2020). Preoperative assessment of upper extremity secondary lymphedema. Cancers, 12, 135. https://doi.org/10.3390/cancers12010135

Zuther, J., & Norton, S. (2013). Pathology. In Lymphedema Management, The Comprehensive Guide for Practitioners (pp. 45–126). Stuttgart, Germany: Thieme Verlag KG. https://doi.org/10.1055/b-0034-56567

Downloads

Published

2025-04-30

How to Cite

ElGendy , M. H., El-Sherif, S. O., Abolkasem, M. A., Aboelmagd, S. R., & Lasheen, Y. R. (2025). Effectiveness of Cold Compression Therapy versus Multi-Waved Locked System Laser on Breast Cancer-Related Lymphoedema: Randomized Controlled Trial. Physical Rehabilitation and Recreational Health Technologies, 10(2), 59–69. https://doi.org/10.15391/prrht.2025-10(2).01

Issue

Section

Original Scientific Article