Multifunctional changes in the athletes’ body during the formation of autonomic regulations’ overstrain under the influence of training load

Authors

  • Oksana Guzii Department Department of physical culture and sports rehabilitation and sports medicine, Ivan Bobersky Lviv State University of Physical Culture, Lviv, Ukraine https://orcid.org/0000-0001-5420-8526
  • Anatolii Mahlovanyi Department of physical education and sports medicine, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine https://orcid.org/0000-0002-1792-597X
  • Oleksandr Romanchuk Department Department of physical culture and sports rehabilitation and sports medicine, Ivan Bobersky Lviv State University of Physical Culture, Lviv, Ukraine https://orcid.org/0000-0001-6592-2573

DOI:

https://doi.org/10.15391/prrht.2023-8(2).03

Keywords:

athletes, overstrain, heart rate variability, blood pressure variability, respiratory variability, hemodynamics, sensomotorics

Abstract

Purpose: the purpose of this study was to generalize polysystemic changes that occur in the body of highly qualified athletes with signs of autonomic regulation overstrain under the influence of training load and during the recovery period after it.

Material & Methods: test subjects were qualified male athletes (N=202) aged 22.6±2.8 years, who were examined by means of spiroarteriocardiorhythmography (SACR) and computerized motion meter (CMM). In accordance with the design the examinations with the aid of SACR and CMM were carried out three times: in the morning, on an empty stomach, in a sitting position on the day of training (G1), immediately after training (during the first 5-7 minutes) (G2) and the next day in the morning after sleep (G3).

Results: according to the data of the examination of athletes in the dynamics of recovery after the training load, options of changes in HRV indicators were determined, which indicated the formation of sympathetic and parasympathetic overstrain in athletes. Two groups were created. The first included 10 athletes, the second included 9 athletes. The analysis of changes in indicators, the research methods used, allowed us to establish differences in their dynamics during the formation of sympathetic and parasympathetic overstrain. Differences were noted among 18 indicators. Among them are indicators of HRV – ABI (c.u.), SRAI (c.u.), ARI (c.u.), RMSSD (ms), VLF (ms2), LFHF (ms2/ms2); variability of arterial pressure – LFSBPn (n.u.), HFSBPn (n.u.), LFHFSBP (mmHg2), TPDBP (mmHg2), LFDBP, (mmHg2), ICDBP (mmHg2/mmHg2); hemodynamics – CO (dm3), GPVR, (dyn/s/cm−5), CI (dm3/m2); respiratory variability – TPR (L×min1)2; of sensorimotor function – SCSleft (s), SMleft (%).

Conclusions: the obtained results on the formation of sympathetic and parasympathetic overstrain under the influence of intense physical activity indicate that changes in the autonomic regulation of the heart rate, which determine the type of heart rate regulation, are accompanied by a number of changes in hemodynamics, autonomic regulation of the pumping function of the heart, vascular tone, respiratory regulation, and sensorimotor function. The determined differential dynamics of changes in cardiorespiratory and sensorimotor indicators will allow further algorithmization of the assessment of the functional state of the athletes’ body in order to detect early states of non-functional overstrain and overtraining.

References

Abreu, R.M. de, Porta, A., Rehder-Santos, P., Cairo, B., Sakaguchi, C.A., da Silva, C.D., Signini, É.D.F., Milan-Mattos, J.C., & Catai, A.M. (2022). Cardiorespiratory coupling strength in athletes and non-athletes. Respiratory Physiology & Neurobiology, 305, 103943. https://doi.org/10.1016/j.resp.2022.103943

Abreu, R.M. de, Rehder-Santos, P., Simões, R.P., & Catai, A.M. (2019). Can high-intensity interval training change cardiac autonomic control? A systematic review. Brazilian Journal of Physical Therapy, 23(4), 279-289. https://doi.org/10.1016/j.bjpt.2018.09.010

Ackel-D’Elia, C., Vancini, R.L., Castelo, A., Nouailhetas, V.L.A., & Silva, A.C. da. (2010). Absence of the predisposing factors and signs and symptoms usually associated with overreaching and overtraining in physical fitness centers. Clinics (Sao Paulo, Brazil), 65(11), 1161-1166. https://doi.org/10.1590/s1807-59322010001100019

Adle, J.W., Duda, J.L., & Ntoumanis, N. (2008). Achievement goals, competition appraisals, and the psychological and emotional welfare of sport participants. Journal of Sport and Exercise Psychology, 30(3), 302-322. https://doi.org/10.1123/jsep.30.3.302

Anderson, T.M., & Ramirez, J.-M. (2017). Respiratory rhythm generation: triple oscillator hypothesis. F1000Research, 6, 139. https://doi.org/10.12688/f1000research.10193.1

Angelova, M., Holloway, P.M., Shelyag, S., Rajasegarar, S., & Rauch, H.G.L. (2021). Effect of Stress on Cardiorespiratory Synchronization of Ironman Athletes. Frontiers in Physiology, 12. https://doi.org/10.3389/fphys.2021.612245

Armstrong, L.E., Bergeron, M.F., Lee, E.C., Mershon, J.E., & Armstrong, E.M. (2022). Overtraining Syndrome as a Complex Systems Phenomenon. Frontiers in Network Physiology, 1. https://doi.org/10.3389/fnetp.2021.794392

Baumert, M., Brechtel, L., Lock, J., Hermsdorf, M., Wolff, R., Baier, V., et al. (2006). Heart rate variability, blood pressure variability, and baroreflex sensitivity in overtrained athletes. Clin J Sport Med, 16(5), 412-7. https://doi.org/10.1097/01.jsm.0000244610.34594.07

Bazhora, Y.I., & Romanchuk, O.P. (2018). Variability and Respiration Pattern of Patients with Persistent Asthma and Obesity. Ukraïnsʹkij Žurnal Medicini, Bìologìï Ta Sportu, 3(7), 74-83. https://doi.org/10.26693/jmbs03.07.074

Bellenger, C., Thomson, R., Davison, K., Robertson, E., & Buckley, J. (2021). The Impact of Functional Overreaching on Post-exercise Parasympathetic Reactivation in Runners. Front Physiol, 11. https://doi.org/10.3389/fphys.2020.614765

Biskamp, J., Bartos, M., & Sauer, J.-F. (2017). Organization of prefrontal network activity by respiration-related oscillations. Scientific Reports, 7, 45508. https://doi.org/10.1038/srep45508

Boloban, V.V. (2006). Sensomotornaia koordinatsiia kak osnova tekhnicheskoi podhotivki [Sensorimotor coordination as a basis for technical training]. Science in Olympic sports, 2, 96-102.

Bourdillon, N., Nilchian, M., & Millet, G.P. (2019). Photoplethysmography Detection of Overreaching. Medicine and Science in Sports and Exercise, 51(4), 701-707. https://doi.org/10.1249/MSS.0000000000001836

Bourdon, P.C., Cardinale, M., Murray, A., Gastin, P., Kellmann, M., Varley, M.C., Gabbett, T.J., Coutts, A.J., Burgess, D.J., Gregson, W., & Cable, N.T. (2017). Monitoring Athlete Training Loads: Consensus Statement. International Journal of Sports Physiology and Performance, 12(s2), S2-161-S2-170. https://doi.org/10.1123/IJSPP.2017-0208

Bresciani, G., Cuevas, M.J., Molinero, O., Almar, M., Suay, F., Salvador, A., de Paz, J.A., Marquez, S., & González-Gallego, J. (2011). Signs of Overload After an Intensified Training. International Journal of Sports Medicine, 32(05), 338-343. https://doi.org/10.1055/s-0031-1271764

Carlén, A., Eklund, G., Andersson, A., Carlhäll, C.-J., Ekström, M., & Hedman, K. (2022). Systolic Blood Pressure Response to Exercise in Endurance Athletes in Relation to Oxygen Uptake, Work Rate and Normative Values. Journal of Cardiovascular Development and Disease, 9(7), 227. https://doi.org/10.3390/jcdd9070227

Christiani, M., Grosicki, G., & Flatt, A. (2021). Cardiac-autonomic and hemodynamic responses to a hypertonic, sugar-sweetened sports beverage in physically active men. Appl Physiol Nutr Metab, 24, 1-7. https://doi.org/10.1139/apnm-2021-0138

Crawford, D.A., Heinrich, K.M., Drake, N.B., DeBlauw, J., & Carper, M.J. (2020). Heart rate variability mediates motivation and fatigue throughout a high-intensity exercise program. Applied Physiology, Nutrition, and Metabolism = Physiologie Appliquee, Nutrition et Metabolisme, 45(2), 193-202. https://doi.org/10.1139/apnm-2019-0123

Crollen, V., Albouy, G., Lepore, F., & Collignon, O. (2017). How visual experience impacts the internal and external spatial mapping of sensorimotor functions. Scientific Reports, 7(1), 1022. https://doi.org/10.1038/s41598-017-01158-9

Da Silva, V.P., De Oliveira, N.A., Silveira, H., Mello, R.G.T., & Deslandes, A.C. (2015). Heart rate variability indexes as a marker of chronic adaptation in athletes: A systematic review. Annals of Noninvasive Electrocardiology, 20(2), 108-118. https://doi.org/10.1111/anec.12237

de Carvalho e Silva, G.I., Brandão, L.H.A., dos Santos Silva, D., de Jesus Alves, M. D., Aidar, F.J., de Sousa Fernandes, M.S., Sampaio, R.A.C., Knechtle, B., & de Souza, R.F. (2022). Acute Neuromuscular, Physiological and Performance Responses After Strength Training in Runners: A Systematic Review and Meta-Analysis. Sports Medicine – Open, 8(1), 105. https://doi.org/10.1186/s40798-022-00497-w

Djaoui, L., Haddad, M., Chamari, K., & Dellal, A. (2017). Monitoring training load and fatigue in soccer players with physiological markers. Physiology & Behavior, 181, 86-94. https://doi.org/10.1016/j.physbeh.2017.09.004

Dupuy, O., Douzi, W, Theurot, D., Bosque,t L., & Dugué, B. (2018). An Evidence-Based Approach for Choosing Post-exercise Recovery Techniques to Reduce Markers of Muscle Damage, Soreness, Fatigue, and Inflammation: A Systematic Review With Meta-Analysis. Front Physiol, 9(403), 403. https://doi.org/10.3389/fphys.2018.00403

Eckberg, D.L. (2000). Physiological basis for human autonomic rhythms. Annals of Medicine, 32(5), 341-349. https://doi.org/10.3109/07853890008995937

Fadel, P. (2008). Arterial baroreflex control of the peripheral vasculature in humans: rest and exercise. Med Sci Sports Exerc, 40(12), 2055-62. https://doi.org/10.1249/MSS.0b013e318180bc80

Fuchs, K., Schumann, A.Y., Kuhnhold, A., Guzik, P., Piskorski, J., Schmidt, G., & Kantelhardt, J.W. (2010). Comparing analysis of heart rate and blood pressure fluctuations in healthy subjects. Proceedings Of The 6th ESGCO 2010, April 12-14, 2010, Berlin, Germany

Harris, K.D., Dashevskiy, T., Mendoza, J., Garcia, A.J., Ramirez, J.-M., & Shea-Brown, E. (2017). Different roles for inhibition in the rhythm-generating respiratory network. Journal of Neurophysiology, 118(4), 2070-2088. https://doi.org/10.1152/jn.00174.2017

Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. (1996). Circulation, 93(5), 1043-1065. http://www.ncbi.nlm.nih.gov/pubmed/8598068

Hoffmann, B., Flatt, A.A., Silva, L.E.V., Młyńczak, M., Baranowski, R., Dziedzic, E., Werner, B., & Gąsior, J.S. (2020). A Pilot Study of the Reliability and Agreement of Heart Rate, Respiratory Rate and Short-Term Heart Rate Variability in Elite Modern Pentathlon Athletes. Diagnostics (Basel, Switzerland), 10(10). https://doi.org/10.3390/diagnostics10100833

Hunter, G.R., Fisher, G., Bryan, D.R., Borges, J.H., & Carter, S.J. (2018). Divergent Blood Pressure Response After High-Intensity Interval Exercise: A Signal of Delayed Recovery? Journal of Strength and Conditioning Research, 32(11), 3004-3010. https://doi.org/10.1519/JSC.0000000000002806

Goldstein, D. (2010). Adrenal responses to stress. Cell Mol Neurobiol, 30(8), 1433-40. https://doi.org/10.1007/s10571-010-9606-9

Grässler, B., Thielmann, B., Böckelmann, I., & Hökelmann, A. (2021) Effects of Different Training Interventions on Heart Rate Variability and Cardiovascular Health and Risk Factors in Young and Middle-Aged Adults: A Systematic Review. Front. Physiol. 12:657274. https://doi.org/10.3389/fphys.2021.657274

Gronwald, T., & Hoos, O. (2020). Correlation properties of heart rate variability during endurance exercise: A systematic review. Annals of Noninvasive Electrocardiology : The Official Journal of the International Society for Holter and Noninvasive Electrocardiology, Inc, 25(1), e12697. https://doi.org/10.1111/anec.12697

Guzii, O. (2019). Changes of types of autonomous regulation of a heart rhythm under the influence of intense physical loads. Scientific journal National Pedagogical Dragomanov University, 10(118), 43-9.

Guzii, O., & Romanchuk, A. (2018). Determinants of the functional state of sportsmen using heart rate variability measurements in tests with controlled respiration. Journal of Physical Education and Sport, 18(2), 715-24. https://doi.org/10.7752/jpes.2018.02105

Guzii, O., & Romanchuk, A. (2017). Differentiation of hemodynamics of top athletes depending on heart rate variability after training. J Adv Med Med Res, 22(3), 1-10. https://doi.org/10.9734/JAMMR/2017/33619

Guzii, O., & Romanchuk, A. (2017). Heart rate variability during controlled respiration after endurance training. Journal of Physical Education and Sport, 17(203), 2024-9. https://doi.org/10.7752/jpes.2017.03203

Guzii, O.V., Romanchuk, A.P., & Мahlovanyy, A.V. (2020). Sensorimotor Indicators as Criteria of the Intense Physical Loads Influence on the Athlete’s Body. Ukraïnsʹkij Žurnal Medicini, Bìologìï Ta Sportu, 5(3), 351-358. https://doi.org/10.26693/jmbs05.03.351

Guzii, O., & Romanchuk, A. (2021). Post-loading dynamics of beat-to-beat blood pressure variability in highly qualified athletes. Physical rehabilitation and recreational health technologies, 6(1), 5-14. https://doi.org/10.5281/zenodo.5095691

Guzii, O., Romanchuk, A., & Мahlovanyy, A. (2020). Post-loading dynamics of heart rate variability indices in highly qualified athletes in the formation of overstrains by sympathetic and parasympathetic types. Art Med, 4(16), 28-36. https://doi.org/10.21802/artm.2020.4.16.28

Guzii, О., Romanchuk, A., Мahlovanyi, A., & Trach, V. (2019). Polyfunctional express-evaluation criteria of the sportsman organism state. J Phys Educ Sport, 19(4), 2352-8. https://doi.org/10.7752/jpes.2019.04356

Guziy, O., & Romanchuk, A. (2016). Sensitivity of arterial baroreflex in the terms of body recovery after training load. Zaporozhye Medical Jour, 3(96), 24-30. https://doi.org/10.14739/2310-1210.2016.3.76922

Incognito, A., Samora, M., Shepherd, A., Cartafina, R., Guimarães, G., Daher, M., et al. (2020). Arterial baroreflex regulation of muscle sympathetic single-unit activity in men: influence of resting blood pressure. Am J Physiol Heart Circ Physiol, 318(4), 937-46. https://doi.org/10.1152/ajpheart.00700.2019

Jurasz, M., Boraczyński, M., Laskin, J.J., Kamelska-Sadowska, A.M., Podstawski, R., Jaszczur-Nowicki, J., Nowakowski, J.J., & Gronek, P. (2022). Acute Cardiorespiratory and Metabolic Responses to Incremental Cycling Exercise in Endurance- and Strength-Trained Athletes. Biology, 11(5), 643. https://doi.org/10.3390/biology11050643

Kalauzi, A., Matić, Z., Platiša, M. M., & Bojić, T. (2023). Two Operational Modes of Cardio-Respiratory Coupling Revealed by Pulse-Respiration Quotient. Bioengineering, 10(2), 180. https://doi.org/10.3390/bioengineering10020180

Karemaker, J.M. (2020). Interpretation of Heart Rate Variability: The Art of Looking Through a Keyhole. Frontiers in Neuroscience, 14. https://doi.org/10.3389/fnins.2020.609570

Karemaker, J., & Wesseling, K. (2008). Variability in Cardiovascular Control: The Baroreflex Reconsidered. Cardiovasc Eng, 8(1), 23-9. https://doi.org/10.1007/s10558-007-9046-4

Kim, T., Hur, J., Kim, S., Kim, H., Choi, B., Choe, K., Yoon, Y., & Kwon, H. (2005). Two-phase reconstruction for the assessment of left ventricular volume and function using retrospective ECG-gated MDCT: comparison with echocardiography. AJR Am J Roentg, 185(2), 319-325.

Lee, D., Kwon, W., Heo, J., & Park, J.Y. (2022). Associations between heart rate variability and brain activity during a working memory task: a preliminary electroencephalogram study on depression and anxiety disorder. Brain Sciences, 12(2), 172. https://doi.org/10.3390/brainsci12020172

Le Meur, Y., Hausswirth, C., Natta, F., Couturier, A., Bignet, F., & Vidal, P.P. (2013). A multidisciplinary approach to overreaching detection in endurance trained athletes. Journal of Applied Physiology (Bethesda, Md. : 1985), 114(3), 411-420. https://doi.org/10.1152/japplphysiol.01254.2012

Machado, S., Cunha, M., Velasques, B., Minc, D., Teixeira, S., Domingues, C.A., Silva, J.G., Bastos, V.H., Budde, H., Cagy, M., Basile, L., Piedade, R., & Ribeiro, P. (2010). Sensorimotor integration: basic concepts, abnormalities related to movement disorders and sensorimotor training-induced cortical reorganization. Revista de Neurologia, 51(7), 427-436. http://www.ncbi.nlm.nih.gov/pubmed/20859923

Maric, V., Ramanathan, D., & Mishra, J. (2020). Respiratory regulation interactions with neuro-cognitive circuitry. Neuroscience & Biobehavioral Reviews, 112, 95-106. https://doi.org/10.1016/j.neubiorev.2020.02.001

Matić, Z., Kalauzi, A., Moser, M., Platiša, M. M., Lazarević, M., & Bojić, T. (2022). Pulse respiration quotient as a measure sensitive to changes in dynamic behavior of cardiorespiratory coupling such as body posture and breathing regime. Frontiers in Physiology, 13. https://doi.org/10.3389/fphys.2022.946613

Meeusen, R., Duclos, M., Foster, C., Fry, A., Gleeson, M., Nieman, D., et al. (2013). Prevention, diagnosis, and treatment of the overtraining syndrome: joint consensus statement of the European College of Sport Science and the American College of Sports Medicine. Med Sci Sport Exerc, 45(1), 186-205. https://doi.org/10.1249/MSS.0b013e318279a10a

Migliaccio, G.M., Russo, L., Maric, M., & Padulo, J. (2023). Sports Performance and Breathing Rate: What Is the Connection? A Narrative Review on Breathing Strategies. Sports, 11(5), 103. https://doi.org/10.3390/sports11050103

Moskvyn, V.A., & Moskvyna, N.V. (2015). Individual differences in functional asymmetry in sports. Science in Olympic sports, 2, 58-62.

Noskin, L., Rubinskiy, A., & Romanchuk, A. (2018). Indications of the Level Individual Cardiovascular and Respiratory Homeostasis Using Continuous Spiroarteriocardiorhythmography. Biomed J Sci Tech Res, 27, 6(1). https://doi.org/10.26717/BJSTR.2018.06.001309

Panenko, A., Babov, K., Noskin, L., Romanchuk, O., & Pivovarov, V. (2006) Spiroarteriocardiorhythmography as a multifunctional method of research of the cardiorespiratory system in rehabilitation institutions. Kyiv; Methodological recommendations of the MHU.

Papaioannou, T.G., Protogerou, A.D., Stamatelopoulos, K.S., Alexandraki, K.I., Vrachatis, D., Argyris, A., et al. (2020). Very-short-term blood pressure variability: complexities and challenges. Blood Press Monit, 25(5), 300. https://doi.org/10.1097/MBP.0000000000000464

Penáz, J. (1992). Criteria for set point estimation in the volume clamp method of blood pressure measurement. Physiol Res, 41(1), 5-10. PMID: 1610779

Pinna, G., Maestr, R., & Mortara, A. (1996). Estimation of arterial blood pressure variability by spectral analysis: comparison between Finapres and invasive measurements. Physiol Meas, 17(3), 147-69. https://doi.org/10.1088/0967-3334/17/3/002

Pivovarov, V.V. (2006). The computerized motion meter. Biomedical Engineering, 40(2), 74-77. https://doi.org/10.1007/s10527-006-0046-2

Pivovarov, V.V. (2006). A spiroarteriocardiorhythmograph. Meditsinskaia Tekhnika, 1, 38-40. http://www.ncbi.nlm.nih.gov/pubmed/16610287

Qammar, N.W., Orinaitė, U., Šiaučiūnaitė, V., Vainoras, A., Šakalytė, G., & Ragulskis, M. (2022). The Complexity of the Arterial Blood Pressure Regulation during the Stress Test. Diagnostics, 12(5), 1256. https://doi.org/10.3390/diagnostics12051256

Romanchuk, A. (2007). The question sensorimotor reactions typing in athletes. Sports science bulletin, 2, 38-42.

Romanchuk, A. (2013). The Complex Approach to a Multipurpose Estimation of a Sportsmen Condition. In My. Karganov (Ed.), Polysystemic approach to school, sport and environment medicine (pp. 39–57). OMICS Publishing Group. https://doi.org/10.4172/978-1-63278-000-3-001-06

Romanchuk, O., Guzii, O., Mahlovanyi, A., Sereda, S., & Ostrovskyy, M. (2023). Comparative features of the morphometric correlates of blood pressure response to physical load of qualified athletes in some sports. Physical rehabilitation and recreational health technologies, 8(1), 3-12. https://doi.org/10.15391/prrht.2023-8(1).01

Romanchuk, A.P., Guzii, O.V., & Maglyovanyi, A.V. (2021). Comparative Characteristics of Sensorimotor Reactions of Highly Qualified Athletes with Different Types of Heart Rate Regulation. Ukraïnsʹkij Žurnal Medicini, Bìologìï Ta Sportu, 6(5), 456-464. https://doi.org/10.26693/jmbs06.05.456

Romanchuk, A.P, Guzii, O.V, Maglyovanyi, A.V, & Trach, V.M (2021). Post-loading dynamics of beat-to-beat blood pressure variability in highly trained athletes during sympathetic and parasympathetic overstrain formation. Journal of Physical Education and Sport, 21(5), 2622-2632. https://doi.org/10.7752/jpes.2021.05350

Romanchuk, O.P., & Guzii, O.V. (2020). The central level of sensorimotor regulation of athletes during the formation of overstrain of the cardiovascular system. Physical Rehabilitation and Recreational Health Technologies, 5(1), 41-51. http://journals.uran.ua/frir_journal/article/view/207576

Romanchuk, O., & Guzii, O. (2020). Sensorimotor Criteria for the Formation of the Autonomic Overstrain of the Athletes’ Cardiovascular System. Int J Sci Ann, 3(1), 46-53. https://doi.org/10.26697/ijsa.2020.1.6

Romanchuk, O., & Guzii, O. (2020). Peculiarities of Changes in Respiratory Variability under the Influence of Training Load in Athletes with Cardiovascular Overstrain by Sympathetic Type. Int J Educ Sci, 3(2), 54. https://doi.org/10.26697/ijes.2020.2.38

Romanchuk, A., & Guzii, O. (2020). Variability and Pattern of Spontaneous Respiration in Different Types of Cardiac Rhythm Regulation of Highly Trained Athletes. Int J Hum Mov Sport Sci, 8(6), 483-93. https://doi.org/10.13189/saj.2020.080622

Romanchuk, O., & Pisaruk V. (2013). Change of central hemodynamics of qualified athletes for testing the use of controlled breathing and evaluation. Pedagog Psychol medical-biological Probl Phys Train Sport, 11, 77-84. https://doi.org/10.6084/m9.figshare.817930

Rosei, E.A., Chiarini, G., & Rizzoni, D. (2020). How important is blood pressure variability? Eur Heart J Suppl, 22(SE), E1-6. https://doi.org/10.1093/eurheartj/suaa061

Saw, A.E., Main, L.C., & Gastin, P.B. (2016). Monitoring the athlete training response: subjective self-reported measures trump commonly used objective measures: a systematic review. British Journal of Sports Medicine, 50(5), 281-291. https://doi.org/10.1136/bjsports-2015-094758

Seiler, S., Haugen, O., & Kuffel, E. (2007). Autonomic Recovery after Exercise in Trained Athletes. Medicine & Science in Sports & Exercise, 39(8), 1366–1373. https://doi.org/10.1249/mss.0b013e318060f17d

Skyba, O., Pshenychna, L., & Ustymenko-Kosorich, O. (2017). Vegetative status of sportsmen depending on the level of their sensorimotor reaction. Journal of Physical Education and Sport, 17(2), 748-752. https://doi.org/10.7752/jpes.2017.02113

Shams, S., LeVan, P., & Chen, J.J. (2021). The neuronal associations of respiratory-volume variability in the resting state. NeuroImage, 230, 117783. https://doi.org/10.1016/j.neuroimage.2021.117783

Shlyk, N. (2016). Management of athletic training taking into account individual heart rate variability characteristics. Hum Physiol, 42(6), 655-64. https://doi.org/10.1134/S0362119716060189

Stanley, J., Peake, J.M., & Buchheit, M. (2013). Cardiac parasympathetic reactivation following exercise: implications for training prescription. Sports Medicine (Auckland, N.Z.), 43(12), 1259-1277. https://doi.org/10.1007/s40279-013-0083-4

Swart, A., & Constantinou, D. (2023). The effects of a 3-day mountain bike cycling race on the autonomic nervous system (ANS) and heart rate variability in amateur cyclists: a prospective quantitative research design. BMC Sports Science, Medicine and Rehabilitation, 15(1), 2. https://doi.org/10.1186/s13102-022-00614-y

Tipton, M.J., Harper, A., Paton, J.F.R., & Costello, J.T. (2017). The human ventilatory response to stress: rate or depth? The Journal of Physiology, 595(17), 5729-5752. https://doi.org/10.1113/JP274596

Tirosh, E., Hijazi, B., Karsaks, E., & Schnell, I. (2022). The Effect of Breathing Route on Heart Rate Variability – A within Subject Comparative Study. Journal of Environmental Protection, 13(06), 398-410. https://doi.org/10.4236/jep.2022.136025

Zohdi, H., Scholkmann, F., & Wolf, U. (2020). Frontal cerebral oxygenation asymmetry: intersubject variability and dependence on systemic physiology, season, and time of day. Neurophotonics, 7(02), 1. https://doi.org/10.1117/1.NPh.7.2.025006

van Hattum, J.C., Verwijs, S.M., Senden, P.J., Spies, J.L., Boekholdt, S.M., Groenink, M., Panhuyzen-Goedkoop, N.M., Willems, A.R., Knobbe, I., Blom, N. A., Wijne, C.A.C.M., Reurink, G., van der Crabben, S.N., Bijsterveld, N.R., Verhagen, E.A.L.M., Pinto, Y.M., Wilde, A.A.M., & Jørstad, H.T. (2022). The Sports Cardiology Team: Personalizing Athlete Care Through a Comprehensive, Multidisciplinary Approach. Mayo Clinic Proceedings: Innovations, Quality & Outcomes, 6(6), 525-535. https://doi.org/10.1016/j.mayocpiqo.2022.08.006

Volpes, G., Barà, C., Busacca, A., Stivala, S., Javorka, M., Faes, L., & Pernice, R. (2022). Feasibility of Ultra-Short-Term Analysis of Heart Rate and Systolic Arterial Pressure Variability at Rest and during Stress via Time-Domain and Entropy-Based Measures. Sensors, 22(23), 9149. https://doi.org/10.3390/s22239149

Watanabe, T., Yoshioka, K., Matsushita, K., & Ishihara, S. (2021). Modulation of sensorimotor cortical oscillations in athletes with yips. Scientific Reports, 11(1), 10376. https://doi.org/10.1038/s41598-021-89947-1

Wesseling, K., Karemaker, J., Castiglioni, P., Toader, E., Cividjian, A., Settels, J., Quintin, L., & Westerhof, B. (2017). Validity and variability of xBRS: instantaneous cardiac baroreflex sensitivity. Physiol Rep, (22), 13509. https://doi.org/10.14814/phy2.13509

Downloads

Published

2023-06-30

How to Cite

Oksana Guzii, Anatolii Mahlovanyi, & Oleksandr Romanchuk. (2023). Multifunctional changes in the athletes’ body during the formation of autonomic regulations’ overstrain under the influence of training load. Physical Rehabilitation and Recreational Health Technologies, 8(2), 91–104. https://doi.org/10.15391/prrht.2023-8(2).03

Issue

Section

Original research article