Cardiorespiratory synchronization under the influence of strength endurance training
DOI:
https://doi.org/10.15391/prrht.2024-9(1).04Keywords:
Strength endurance, cardiorespiratory synchronization, controlled respiration, Hildebrandt index, volumetric synchronization indexAbstract
Purpose: to determine changes in the parameters of cardiorespiratory relationships during the maneuver with a change in breathing rate after a 4-month cycle of training aimed at the development of strength endurance.
Material & Methods: the results of the spiroarteriocardiorhythmographic study of 22 healthy men aged 20.7±2.3 years, who for 4 months 2 times a week for 90 minutes, were analyzed (a total of 30 classes were held) engaged in training for the development of strength endurance. The indicators of heart rate (min–1), respiratory rate (min–1), cardiac output (dm3×min–1), minute lung ventilation (L×min–1) and their derivatives – the Hildebrandt index (HR/RR) and volume synchronization index (CO/V), which were obtained during spontaneous respiration and controlled breathing at 0.1 Hz and 0.25 Hz.
Results: it was shown that strength endurance training led to a probable decrease in heart rate from 71.4 (63.9; 77.5) to 64.3 (60.8; 68.3), p=0.002, respiratory rate from 14.1 (12, 7; 16.8) to 13.8 (10.7; 15.3), p= 0.020 and minute lung ventilation from 8.19 (6.24; 8.86) to 6.40 (3.73; 7.74) ), p=0.004 during spontaneous breathing, as well as a significant increase in the volumetric synchronization index. (dm3×L–1) during spontaneous respiration from 0.597 (0.490; 0.832) to 0.725 (0.564; 1.148), p=0.008, during controlled respiration at 0.1 Hz from 0.327 (0.382; 0.529) to 0.532 (0.441; 0.723), p=0.012 and during controlled respiration at 0.25 Hz from 0,245 (0,339; 0,455) to 0,481 (0,373; 0,616), р=0,003 against the background of a decrease in the Hildebrandt index during controlled respiration 0,1 Hz from 11.14 (10.43; 12.49) to 10.18 (9.54; 11.00), p=0.001, as well as with controlled respiration at 0.25 Hz from 5.33 (4.68; 5.85) to 4.46 (4.13; 4, 78), p=0.000.
Conclusions: endurance training for 4 months led to an economization of the cardiovascular and respiratory systems function and a decrease in the response to sympathoadrenal activation and hyperventilation.
References
Abreu, R.M. de, Cairo, B., & Porta, A. (2023). On the significance of estimating cardiorespiratory coupling strength in sports medicine. Frontiers in Network Physiology, 2. https://doi.org/10.3389/fnetp.2022.1114733
Abreu, R.M. de, Porta, A., Rehder-Santos, P., Cairo, B., Sakaguchi, C.A., da Silva, C.D., Signini, É.D.F., Milan-Mattos, J.C., & Catai, A.M. (2022). Cardiorespiratory coupling strength in athletes and non-athletes. Respiratory Physiology & Neurobiology, 305, 103943. https://doi.org/10.1016/j.resp.2022.103943
Angelova, M., Holloway, P.M., Shelyag, S., Rajasegarar, S., & Rauch, H.G. L. (2021). Effect of Stress on Cardiorespiratory Synchronization of Ironman Athletes. Frontiers in Physiology, 12. https://doi.org/10.3389/fphys.2021.612245
Armstrong, L.E., Bergeron, M.F., Lee, E.C., Mershon, J.E., & Armstrong, E.M. (2022). Overtraining Syndrome as a Complex Systems Phenomenon. Frontiers in Network Physiology, 1. https://doi.org/10.3389/fnetp.2021.794392
Baumert, M., Brechtel, L., Lock, J., Hermsdorf, M., Wolff, R., Baier, V., & Voss, A. (2006). Heart rate variability, blood pressure variability, and baroreflex sensitivity in overtrained athletes. Clinical Journal of Sport Medicine : Official Journal of the Canadian Academy of Sport Medicine, 16(5), 412-417. https://doi.org/10.1097/01.jsm.0000244610.34594.07
Baumert, M., Javorka, M., & Kabir, M. (2015). Joint symbolic dynamics for the assessment of cardiovascular and cardiorespiratory interactions. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373(2034), 20140097. https://doi.org/10.1098/rsta.2014.0097
Bellinger, P. (2020). Functional Overreaching in Endurance Athletes: A Necessity or Cause for Concern? Sports Medicine (Auckland, N.Z.), 50(6), 1059-1073. https://doi.org/10.1007/s40279-020-01269-w
Bernardi, L., Gabutti, A., Porta, C., & Spicuzza, L. (2001). Slow breathing reduces chemoreflex response to hypoxia and hypercapnia, and increases baroreflex sensitivity. Journal of Hypertension, 19(12), 2221–2229. https://doi.org/10.1097/00004872-200112000-00016
Bilo, G., Revera, M., Bussotti, M., Bonacina, D., Styczkiewicz, K., Caldara, G., Giglio, A., Faini, A., Giuliano, A., Lombardi, C., Kawecka-Jaszcz, K., Mancia, G., Agostoni, P., & Parati, G. (2012). Effects of Slow Deep Breathing at High Altitude on Oxygen Saturation, Pulmonary and Systemic Hemodynamics. PLoS ONE, 7(11), e49074. https://doi.org/10.1371/journal.pone.0049074
Brændholt, M., Kluger, D.S., Varga, S., Heck, D.H., Gross, J., & Allen, M.G. (2023). Breathing in waves: Understanding respiratory-brain coupling as a gradient of predictive oscillations. Neuroscience and Biobehavioral Reviews, 152, 105262. https://doi.org/10.1016/j.neubiorev.2023.105262
Byeon, K., Choi, J.-O., Yang, J.H., Sung, J., Park, S.W., Oh, J.K., & Hong, K.P. (2012). The response of the vena cava to abdominal breathing. Journal of Alternative and Complementary Medicine (New York, N.Y.), 18(2), 153-157. https://doi.org/10.1089/acm.2010.0656
Chovanec, L., & Gröpel, P. (2020). Effects of 8-week endurance and resistance training programmes on cardiovascular stress responses, life stress and coping. Journal of Sports Sciences, 38(15), 1699-1707. https://doi.org/10.1080/02640414.2020.1756672
Da Silva, C.D., Catai, A.M., Abreu, R.M. de, Signini, É.D. F., Galdino, G.A.M., Lorevice, L., Santos, L.M., & Mendes, R.G. (2023). Cardiorespiratory coupling as an early marker of cardiac autonomic dysfunction in type 2 diabetes mellitus patients. Respiratory Physiology & Neurobiology, 311, 104042. https://doi.org/10.1016/j.resp.2023.104042
Dempsey, J.A., & Smith, C.A. (2019). Update on Chemoreception: Influence on Cardiorespiratory Regulation and Pathophysiology. Clinics in Chest Medicine, 40(2), 269-283. https://doi.org/10.1016/j.ccm.2019.02.001
Dick, T.E., Hsieh, Y.H., Dhingra, R.R., Baekey, D.M., Galán, R.F., Wehrwein, E., & Morris, K.F. (2014). Cardiorespiratory coupling: Common rhythms in cardiac, sympathetic, and respiratory activities. In Progress in Brain Research (Vol. 209, pp. 191–205). https://doi.org/10.1016/B978-0-444-63274-6.00010-2
Dupuy, O., Douzi, W., Theurot, D., Bosquet, L., & Dugué, B. (2018). An Evidence-Based Approach for Choosing Post-exercise Recovery Techniques to Reduce Markers of Muscle Damage, Soreness, Fatigue, and Inflammation: A Systematic Review With Meta-Analysis. Frontiers in Physiology, 9(403), 403. https://doi.org/10.3389/fphys.2018.00403
Eckberg, D.L., & Karemaker, J.M. (2009). Point: Counterpoint: Respiratory sinus arrhythmia is due to a central mechanism vs. respiratory sinus arrhythmia is due to the baroreflex mechanism. Journal of Applied Physiology, 106(5), 1740-1744. https://doi.org/10.1152/japplphysiol.91107.2008
Fisher, J.P., Zera, T., & Paton, J.F.R. (2022). Respiratory-cardiovascular interactions. In R. Chen and P.G. Guyenet (Ed.), Handbook of Clinical Neurology (Vol. 188, pp. 279-308). Elsevier B.V. https://doi.org/10.1016/B978-0-323-91534-2.00006-0
Fuller, D.D., Rana, S., Smuder, A.J., & Dale, E.A. (2022). The phrenic neuromuscular system. In Handbook of Clinical Neurology (Vol. 188, pp. 393-408). https://doi.org/10.1016/B978-0-323-91534-2.00012-6
Gäbler, M., Prieske, O., Hortobágyi, T., & Granacher, U. (2018). The effects of concurrent strength and endurance training on physical fitness and athletic performance in youth: A systematic review and meta-analysis. Frontiers in Physiology, 9(AUG). https://doi.org/10.3389/fphys.2018.01057
Garber, C.E., Blissmer, B., Deschenes, M.R., Franklin, B.A., Lamonte, M.J., Lee, I.M., Nieman, D.C., & Swain, D.P. (2011). Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Medicine and Science in Sports and Exercise, 43(7), 1334-1359. https://doi.org/10.1249/MSS.0b013e318213fefb
Garcia, A.J., Koschnitzky, J.E., Dashevskiy, T., & Ramirez, J.-M. (2013). Cardiorespiratory coupling in health and disease. Autonomic Neuroscience, 175(1-2), 26-37. https://doi.org/10.1016/j.autneu.2013.02.006
Gardner, W.N. (1996). The pathophysiology of hyperventilation disorders. Chest, 109(2), 516-534. https://doi.org/10.1378/chest.109.2.516
Gastinger, S., Sorel, A., Nicolas, G., Gratas-Delamarche, A., & Prioux, J. (2010). A comparison between ventilation and heart rate as indicator of oxygen uptake during different intensities of exercise. Journal of Sports Science and Medicine, 9(1), 110-118. http://www.ncbi.nlm.nih.gov/pubmed/24149394
Gibbons, T.D., Zuj, K.A., Peterson, S.D., & Hughson, R.L. (2019). Comparison of pulse contour, aortic Doppler ultrasound and bioelectrical impedance estimates of stroke volume during rapid changes in blood pressure. Experimental Physiology, 104(3), 368-378. https://doi.org/10.1113/EP087240
Girin, B., Juventin, M., Garcia, S., Lefèvre, L., Amat, C., Fourcaud-Trocmé, N., & Buonviso, N. (2021). The deep and slow breathing characterizing rest favors brain respiratory-drive. Scientific Reports, 11(1), 7044. https://doi.org/10.1038/s41598-021-86525-3
Guzii, O.V., & Romanchuk, О.P. (2021a). Assessment of individual changes in the activity of the athletes cardiorespiratory system during current examinations. Physical Rehabilitation and Recreational Health Technologies, 6(3), 5-19. https://doi.org/10.15391/prrht.2021-6(3).01
Guzii, O., & Romanchuk, O. (2021b). Post-loading dynamics of beat-to-beat blood pressure variability in highly qualified athletes. Fizicna Reabilitacia Ta Rekreacijno-Ozdorovci Tehnologii, 6(1), 5-14. https://doi.org/https://doi.org/10.15391/prrht.2021-6(1).01
Guzii, O., Mahlovanyi, A., & Romanchuk, O. (2023). Multifunctional changes in the athletes’ body during the formation of autonomic regulations’ overstrain under the influence of training load. Physical Rehabilitation and Recreational Health Technologies, 8(2), 91-104. https://doi.org/10.15391/prrht.2023-8(2).03
Guzii, О., Romanchuk, A., Мahlovanyi, A., & Trach, V. (2019). Polyfunctional express-evaluation criteria of the sportsman organism state. Journal of Physical Education and Sport ® (JPES), 19(4), 2352-2358. https://doi.org/10.7752/jpes.2019.04356
Guzii, O., & Romanchuk, A. (2017). Heart rate variability during controlled respiration after endurance training. Journal of Physical Education and Sport ® (JPES), 17(203), 2024-2029. https://doi.org/10.7752/jpes.2017.03203
Guzii, O., & Romanchuk, A. (2018). Determinants of the functional state of sportsmen using heart rate variability measurements in tests with controlled respiration. Journal of Physical Education and Sport, 18(2), 715-724. https://doi.org/10.7752/jpes.2018.02105
Guzii, О.V., & Romanchuk, A.P. (2016). Sensitivity of arterial baroreflex in the terms of body recovery after training load. Zaporozhye Medical Journal, 3, 24-29. https://doi.org/10.14739/2310-1210.2016.3.76922
Hackett, D.A., & Chow, C.M. (2013). The valsalva maneuver: Its effect on intra-abdominal pressure and safety issues during resistance exercise. Journal of Strength and Conditioning Research, 27(8), 2338-2345. https://doi.org/10.1519/JSC.0b013e31827de07d
Harford, M., Catherall, J., Gerry, S., Young, J., & Watkinson, P. (2019). Availability and performance of image-based, non-contact methods of monitoring heart rate, blood pressure, respiratory rate, and oxygen saturation: a systematic review. Physiological Measurement, 40(6), 06TR01. https://doi.org/10.1088/1361-6579/ab1f1d
Hayano, J., Yasuma, F., Okada, A., Mukai, S., & Fujinami, T. (1996). Respiratory sinus arrhythmia: A phenomenon improving pulmonary gas exchange and circulatory efficiency. Circulation, 94(4), 842-847. https://doi.org/10.1161/01.CIR.94.4.842
Hildebrandt, G. (1953). Uber die rhythmische Funktionsordnung von Puls und Atem. Zeitschrift Für Klinische Medizin, 150(5), 444-454. http://www.ncbi.nlm.nih.gov/pubmed/13137288
Hoffmann, B., Flatt, A.A., Silva, L.E.V., Młyńczak, M., Baranowski, R., Dziedzic, E., Werner, B., & Gąsior, J.S. (2020). A Pilot Study of the Reliability and Agreement of Heart Rate, Respiratory Rate and Short-Term Heart Rate Variability in Elite Modern Pentathlon Athletes. Diagnostics (Basel, Switzerland), 10(10). https://doi.org/10.3390/diagnostics10100833
Hornsveld, H., Garssen, B., Koornwinder, M., Fiedeldij Dop, M., van Spiegel, P., & Kolk, A. (1995). Effects of high and low anxiety provoking instructions on the responses to the hyperventilation provocation test. International Journal of Behavioral Medicine, 2(2), 135-156. https://doi.org/10.1207/s15327558ijbm0202_4
Ignjatovic, A., Radovanovic, D., Stankovic, R., Marković, Z., & Kocic, J. (2011). Influence of resistance training on cardiorespiratory endurance and muscle power and strength in young athletes. Acta Physiologica Hungarica, 98(3), 305-312. https://doi.org/10.1556/APhysiol.98.2011.3.7
Illigens, B.M.W., & Gibbons, C.H. (2019). Autonomic testing, methods and techniques. In Handbook of Clinical Neurology (Vol. 160, pp. 419-433). https://doi.org/10.1016/B978-0-444-64032-1.00028-X
Incognito, A.V, Duplea, S.-G., Lee, J.B., Sussman, J., Shepherd, A.D., Doherty, C.J., Cacoilo, J.A., Notay, K., & Millar, P.J. (2019). Arterial baroreflex regulation of muscle sympathetic nerve activity at rest and during stress. The Journal of Physiology, 597(18), 4729-4741. https://doi.org/10.1113/JP278376
Javorka, M., Krohova, J., Czippelova, B., Turianikova, Z., Mazgutova, N., Wiszt, R., Ciljakova, M., Cernochova, D., Pernice, R., Busacca, A., & Faes, L. (2020). Respiratory Sinus Arrhythmia Mechanisms in Young Obese Subjects. Frontiers in Neuroscience, 14. https://doi.org/10.3389/fnins.2020.00204
Kellmann, M., Bertollo, M., Bosquet, L., Brink, M., Coutts, A. J., Duffield, R., Erlacher, D., Halson, S. L., Hecksteden, A., Heidari, J., Kallus, K. W., Meeusen, R., Mujika, I., Robazza, C., Skorski, S., Venter, R., & Beckmann, J. (2018). Recovery and Performance in Sport: Consensus Statement. International Journal of Sports Physiology and Performance, 13(2), 240-245. https://doi.org/10.1123/ijspp.2017-0759
King, J.C. (1988). Hyperventilation - A therapist’s point of view: Discussion paper. Journal of the Royal Society of Medicine, 81(9), 532-536. https://doi.org/10.1177/014107688808100913
Kim, T.H., Hur, J., Kim, S.J., Kim, H.S., Choi, B.W., Choe, K.O., Yoon, Y.W., & Kwon, H.M. (2005). Two-phase reconstruction for the assessment of left ventricular volume and function using retrospective ECG-gated MDCT: Comparison with echocardiography. American Journal of Roentgenology, 185(2), 319-325. https://doi.org/10.2214/ajr.185.2.01850319
Kox, M., Van Eijk, L.T., Zwaag, J., Van Den Wildenberg, J., Sweep, F.C.G.J., Van Der Hoeven, J.G., & Pickkers, P. (2014). Voluntary activation of the sympathetic nervous system and attenuation of the innate immune response in humans. Proceedings of the National Academy of Sciences of the United States of America, 111(20), 7379-7384. https://doi.org/10.1073/pnas.1322174111
Krohn, F., Novello, M., van der Giessen, R.S., De Zeeuw, C. I., Pel, J.J.M., & Bosman, L.W.J. (2023). The integrated brain network that controls respiration. ELife, 12. https://doi.org/10.7554/elife.83654
Lamotte, M., Fleury, F., Pirard, M., Jamon, A., & van de Borne, P. (2010). Acute cardiovascular response to resistance training during cardiac rehabilitation: Effect of repetition speed and rest periods. European Journal of Preventive Cardiology, 17(3), 329-336. https://doi.org/10.1097/HJR.0b013e328332efdd
Lässing, J., Maudrich, T., Kenville, R., Uyar, Z., Bischoff, C., Fikenzer, S., Busse, M., & Falz, R. (2023). Intensity-dependent cardiopulmonary response during and after strength training. Scientific Reports, 13(1), 6632. https://doi.org/10.1038/s41598-023-33873-x
Li, C., Chang, Q., Zhang, J., & Chai, W. (2018). Effects of slow breathing rate on heart rate variability and arterial baroreflex sensitivity in essential hypertension. Medicine, 97(18), e0639. https://doi.org/10.1097/MD.0000000000010639
Limberg, J.K., Morgan, B.J., Schrage, W.G., & Dempsey, J.A. (2013). Respiratory influences on muscle sympathetic nerve activity and vascular conductance in the steady state. American Journal of Physiology – Heart and Circulatory Physiology, 304(12), H1615-23. https://doi.org/10.1152/ajpheart.00112.2013
Macefield, V.G., & Henderson, L.A. (2019). Identification of the human sympathetic connectome involved in blood pressure regulation. NeuroImage, 202, 116119. https://doi.org/10.1016/j.neuroimage.2019.116119
Matić, Z., Kalauzi, A., Moser, M., Platiša, M.M., Lazarević, M., & Bojić, T. (2022). Pulse respiration quotient as a measure sensitive to changes in dynamic behavior of cardiorespiratory coupling such as body posture and breathing regime. Frontiers in Physiology, 13. https://doi.org/10.3389/fphys.2022.946613
Matos-Santos, L., Farinatti, P., P. Borges, J., Massaferri, R., & Monteiro, W. (2017). Cardiovascular Responses to Resistance Exercise Performed with Large and Small Muscle Mass. International Journal of Sports Medicine, 38(12), 883-889. https://doi.org/10.1055/s-0043-116671
Meeusen, R., Duclos, M., Foster, C., Fry, A., Gleeson, M., Nieman, D., Raglin, J., Rietjens, G., Steinacker, J., & Urhausen, A. (2013). Prevention, diagnosis, and treatment of the overtraining syndrome: Joint consensus statement of the european college of sport science and the American College of Sports Medicine. Medicine and Science in Sports and Exercise, 45(1), 186-205. https://doi.org/10.1249/MSS.0b013e318279a10a
Megahed, M., Al-Torbany, M., Al-Ghool, M., & Tarek, Z. (2023). Effects of high-intensity interval training using “Tabata protocol” on respiratory parameters, special endurance, and 800-m runners’ performance. Journal of Human Sport and Exercise, 18(4), 842-857. https://doi.org/10.14198/jhse.2023.184.09
Mühlen, J.M., Stang, J., Lykke Skovgaard, E., Judice, P.B., Molina-Garcia, P., Johnston, W., Sardinha, L.B., Ortega, F.B., Caulfield, B., Bloch, W., Cheng, S., Ekelund, U., Brønd, J.C., Grøntved, A., & Schumann, M. (2021). Recommendations for determining the validity of consumer wearable heart rate devices: Expert statement and checklist of the INTERLIVE Network. British Journal of Sports Medicine, 55(14), 767-779. https://doi.org/10.1136/bjsports-2020-103148
Nicolò, A., Massaroni, C., Schena, E., & Sacchetti, M. (2020). The importance of respiratory rate monitoring: From healthcare to sport and exercise. Sensors (Switzerland), 20(21), 1-45. https://doi.org/10.3390/s20216396
Ovadia-Blechman, Z., Gavish, B., Levy-Aharoni, D., Shashar, D., & Aharonson, V. (2017). The coupling between peripheral microcirculation and slow breathing. Medical Engineering and Physics, 39, 49-56. https://doi.org/10.1016/j.medengphy.2016.10.009
Panenko, A., Babov, K., Noskin, L., Romanchuk, O., & Pivovarov, V. (2006) Spiroarteriocardiorhythmography as a multifunctional method of research of the cardiorespiratory system in rehabilitation institutions. Kyiv; Methodological recommendations of the MHU
Paprika, D., Gingl, Z., Rudas, L., & Zöllei, E. (2014). Hemodynamic effects of slow breathing: Does the pattern matter beyond the rate? Acta Physiologica Hungarica, 101(3), 273-281. https://doi.org/10.1556/APhysiol.101.2014.3.2
Parviainen, T., Lyyra, P., & Nokia, M.S. (2022). Cardiorespiratory rhythms, brain oscillatory activity and cognition: review of evidence and proposal for significance. Neuroscience & Biobehavioral Reviews, 142, 104908. https://doi.org/10.1016/j.neubiorev.2022.104908
Pinna, G.D., Porta, A., Maestri, R., De Maria, B., Dalla Vecchia, L.A., & La Rovere, M.T. (2017). Different estimation methods of spontaneous baroreflex sensitivity have different predictive value in heart failure patients. Journal of Hypertension, 35(8), 1666-1675. https://doi.org/10.1097/HJH.0000000000001377
Pinsky, M.R. (2018). Cardiopulmonary Interactions: Physiologic Basis and Clinical Applications. Annals of the American Thoracic Society, 15(Supplement_1), S45-S48. https://doi.org/10.1513/AnnalsATS.201704-339FR
Romanchuk, O., Guzii, O., Mahlovanyi, A., Sereda, S., & Ostrovskyy, M. (2023). Comparative features of the morphometric correlates of blood pressure response to physical load of qualified athletes in some sports. Physical Rehabilitation and Recreational Health Technologies, 8(1), 3-12. https://doi.org/10.15391/prrht.2023-8(1).01
Romanchuk, O.P., & Guziy, O.V. (2020a). Modern approaches to the objectification of the functional state of the athletes’ body during current examinations. Fizicna Reabilitacia Ta Rekreacijno-Ozdorovci Tehnologii, 5(1), 8-18. https://doi.org/10.15391/prrht.2020-5(1).02
Romanchuk, A., & Guzii, O. (2020b). Variability and pattern of spontaneous respiration in different types of cardiac rhythm regulation of highly trained athletes. International Journal of Human Movement and Sports Sciences, 8(6), 483-493. https://doi.org/10.13189/saj.2020.080622
Romanchuk, O. (2023). Cardiorespiratory dynamics during respiratory maneuver in athletes. Frontiers in Network Physiology, 3. https://doi.org/10.3389/fnetp.2023.1276899
Russo, M.A., Santarelli, D.M., & O’Rourke, D. (2017). The physiological effects of slow breathing in the healthy human. Breathe, 13(4), 298-309. https://doi.org/10.1183/20734735.009817
Sampaio, K.N., Mauad, H., Vasquez, E.C., & Schenberg, L.C. (2012). Role of pulmonary stretch receptors and sympathetic system in the inhibition of reflex bradycardia produced by chemical stimulation of the periaqueductal gray matter of the rat. Neuroscience, 210, 222-233. https://doi.org/10.1016/j.neuroscience.2012.02.041
Schneider, C., Wiewelhove, T., Raeder, C., Flatt, A.A., Hoos, O., Hottenrott, L., Schumbera, O., Kellmann, M., Meyer, T., Pfeiffer, M., & Ferrauti, A. (2019). Heart rate variability monitoring during strength and high-intensity interval training overload microcycles. Frontiers in Physiology, 10(MAY), 582. https://doi.org/10.3389/fphys.2019.00582
Sin, P.Y.W., Galletly, D.C., & Tzeng, Y.C. (2010). Influence of breathing frequency on the pattern of respiratory sinus arrhythmia and blood pressure: Old questions revisited. American Journal of Physiology – Heart and Circulatory Physiology, 298(5), H1588-H1599. https://doi.org/10.1152/ajpheart.00036.2010
Spence, A.L., Naylor, L.H., Carter, H.H., Buck, C.L., Dembo, L., Murray, C.P., Watson, P., Oxborough, D., George, K.P., & Green, D.J. (2011). A prospective randomised longitudinal MRI study of left ventricular adaptation to endurance and resistance exercise training in humans. The Journal of Physiology, 589(22), 5443-5452. https://doi.org/10.1113/jphysiol.2011.217125
Stromberg, S.E., Russell, M.E., & Carlson, C.R. (2015). Diaphragmatic breathing and its effectiveness for the management of motion sickness. Aerospace Medicine and Human Performance, 86(5), 452-457. https://doi.org/10.3357/AMHP.4152.2015
Vidigal, G.A. de P., Tavares, B.S., Garner, D.M., Porto, A.A., Carlos de Abreu, L., Ferreira, C., & Valenti, V.E. (2016). Slow breathing influences cardiac autonomic responses to postural maneuver. Complementary Therapies in Clinical Practice, 23, 14-20. https://doi.org/10.1016/j.ctcp.2015.11.005
Vostatek, P., Novák, D., Rychnovský, T., & Rychnovská, Š. (2013). Diaphragm Postural Function Analysis Using Magnetic Resonance Imaging. PLoS ONE, 8(3), e56724. https://doi.org/10.1371/journal.pone.0056724
Zoccal, D.B., Machado, B.H., & Moraes, D.J.A. (2022). Cardiorespiratory interactions in health and disease. In Primer on the Autonomic Nervous System, Fourth Edition (pp. 165-169). Elsevier. https://doi.org/10.1016/B978-0-323-85492-4.00043-0
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.