Multifunctional changes in the athletes’ body during the formation of autonomic regulations’ overstrain under the influence of training load


  • Oksana Guzii Department Department of physical culture and sports rehabilitation and sports medicine, Ivan Bobersky Lviv State University of Physical Culture, Lviv, Ukraine
  • Anatolii Mahlovanyi Department of physical education and sports medicine, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
  • Oleksandr Romanchuk Department Department of physical culture and sports rehabilitation and sports medicine, Ivan Bobersky Lviv State University of Physical Culture, Lviv, Ukraine



athletes, overstrain, heart rate variability, blood pressure variability, respiratory variability, hemodynamics, sensomotorics


Purpose: the purpose of this study was to generalize polysystemic changes that occur in the body of highly qualified athletes with signs of autonomic regulation overstrain under the influence of training load and during the recovery period after it.

Material & Methods: test subjects were qualified male athletes (N=202) aged 22.6±2.8 years, who were examined by means of spiroarteriocardiorhythmography (SACR) and computerized motion meter (CMM). In accordance with the design the examinations with the aid of SACR and CMM were carried out three times: in the morning, on an empty stomach, in a sitting position on the day of training (G1), immediately after training (during the first 5-7 minutes) (G2) and the next day in the morning after sleep (G3).

Results: according to the data of the examination of athletes in the dynamics of recovery after the training load, options of changes in HRV indicators were determined, which indicated the formation of sympathetic and parasympathetic overstrain in athletes. Two groups were created. The first included 10 athletes, the second included 9 athletes. The analysis of changes in indicators, the research methods used, allowed us to establish differences in their dynamics during the formation of sympathetic and parasympathetic overstrain. Differences were noted among 18 indicators. Among them are indicators of HRV – ABI (c.u.), SRAI (c.u.), ARI (c.u.), RMSSD (ms), VLF (ms2), LFHF (ms2/ms2); variability of arterial pressure – LFSBPn (n.u.), HFSBPn (n.u.), LFHFSBP (mmHg2), TPDBP (mmHg2), LFDBP, (mmHg2), ICDBP (mmHg2/mmHg2); hemodynamics – CO (dm3), GPVR, (dyn/s/cm−5), CI (dm3/m2); respiratory variability – TPR (L×min1)2; of sensorimotor function – SCSleft (s), SMleft (%).

Conclusions: the obtained results on the formation of sympathetic and parasympathetic overstrain under the influence of intense physical activity indicate that changes in the autonomic regulation of the heart rate, which determine the type of heart rate regulation, are accompanied by a number of changes in hemodynamics, autonomic regulation of the pumping function of the heart, vascular tone, respiratory regulation, and sensorimotor function. The determined differential dynamics of changes in cardiorespiratory and sensorimotor indicators will allow further algorithmization of the assessment of the functional state of the athletes’ body in order to detect early states of non-functional overstrain and overtraining.


Abreu, R.M. de, Porta, A., Rehder-Santos, P., Cairo, B., Sakaguchi, C.A., da Silva, C.D., Signini, É.D.F., Milan-Mattos, J.C., & Catai, A.M. (2022). Cardiorespiratory coupling strength in athletes and non-athletes. Respiratory Physiology & Neurobiology, 305, 103943.

Abreu, R.M. de, Rehder-Santos, P., Simões, R.P., & Catai, A.M. (2019). Can high-intensity interval training change cardiac autonomic control? A systematic review. Brazilian Journal of Physical Therapy, 23(4), 279-289.

Ackel-D’Elia, C., Vancini, R.L., Castelo, A., Nouailhetas, V.L.A., & Silva, A.C. da. (2010). Absence of the predisposing factors and signs and symptoms usually associated with overreaching and overtraining in physical fitness centers. Clinics (Sao Paulo, Brazil), 65(11), 1161-1166.

Adle, J.W., Duda, J.L., & Ntoumanis, N. (2008). Achievement goals, competition appraisals, and the psychological and emotional welfare of sport participants. Journal of Sport and Exercise Psychology, 30(3), 302-322.

Anderson, T.M., & Ramirez, J.-M. (2017). Respiratory rhythm generation: triple oscillator hypothesis. F1000Research, 6, 139.

Angelova, M., Holloway, P.M., Shelyag, S., Rajasegarar, S., & Rauch, H.G.L. (2021). Effect of Stress on Cardiorespiratory Synchronization of Ironman Athletes. Frontiers in Physiology, 12.

Armstrong, L.E., Bergeron, M.F., Lee, E.C., Mershon, J.E., & Armstrong, E.M. (2022). Overtraining Syndrome as a Complex Systems Phenomenon. Frontiers in Network Physiology, 1.

Baumert, M., Brechtel, L., Lock, J., Hermsdorf, M., Wolff, R., Baier, V., et al. (2006). Heart rate variability, blood pressure variability, and baroreflex sensitivity in overtrained athletes. Clin J Sport Med, 16(5), 412-7.

Bazhora, Y.I., & Romanchuk, O.P. (2018). Variability and Respiration Pattern of Patients with Persistent Asthma and Obesity. Ukraïnsʹkij Žurnal Medicini, Bìologìï Ta Sportu, 3(7), 74-83.

Bellenger, C., Thomson, R., Davison, K., Robertson, E., & Buckley, J. (2021). The Impact of Functional Overreaching on Post-exercise Parasympathetic Reactivation in Runners. Front Physiol, 11.

Biskamp, J., Bartos, M., & Sauer, J.-F. (2017). Organization of prefrontal network activity by respiration-related oscillations. Scientific Reports, 7, 45508.

Boloban, V.V. (2006). Sensomotornaia koordinatsiia kak osnova tekhnicheskoi podhotivki [Sensorimotor coordination as a basis for technical training]. Science in Olympic sports, 2, 96-102.

Bourdillon, N., Nilchian, M., & Millet, G.P. (2019). Photoplethysmography Detection of Overreaching. Medicine and Science in Sports and Exercise, 51(4), 701-707.

Bourdon, P.C., Cardinale, M., Murray, A., Gastin, P., Kellmann, M., Varley, M.C., Gabbett, T.J., Coutts, A.J., Burgess, D.J., Gregson, W., & Cable, N.T. (2017). Monitoring Athlete Training Loads: Consensus Statement. International Journal of Sports Physiology and Performance, 12(s2), S2-161-S2-170.

Bresciani, G., Cuevas, M.J., Molinero, O., Almar, M., Suay, F., Salvador, A., de Paz, J.A., Marquez, S., & González-Gallego, J. (2011). Signs of Overload After an Intensified Training. International Journal of Sports Medicine, 32(05), 338-343.

Carlén, A., Eklund, G., Andersson, A., Carlhäll, C.-J., Ekström, M., & Hedman, K. (2022). Systolic Blood Pressure Response to Exercise in Endurance Athletes in Relation to Oxygen Uptake, Work Rate and Normative Values. Journal of Cardiovascular Development and Disease, 9(7), 227.

Christiani, M., Grosicki, G., & Flatt, A. (2021). Cardiac-autonomic and hemodynamic responses to a hypertonic, sugar-sweetened sports beverage in physically active men. Appl Physiol Nutr Metab, 24, 1-7.

Crawford, D.A., Heinrich, K.M., Drake, N.B., DeBlauw, J., & Carper, M.J. (2020). Heart rate variability mediates motivation and fatigue throughout a high-intensity exercise program. Applied Physiology, Nutrition, and Metabolism = Physiologie Appliquee, Nutrition et Metabolisme, 45(2), 193-202.

Crollen, V., Albouy, G., Lepore, F., & Collignon, O. (2017). How visual experience impacts the internal and external spatial mapping of sensorimotor functions. Scientific Reports, 7(1), 1022.

Da Silva, V.P., De Oliveira, N.A., Silveira, H., Mello, R.G.T., & Deslandes, A.C. (2015). Heart rate variability indexes as a marker of chronic adaptation in athletes: A systematic review. Annals of Noninvasive Electrocardiology, 20(2), 108-118.

de Carvalho e Silva, G.I., Brandão, L.H.A., dos Santos Silva, D., de Jesus Alves, M. D., Aidar, F.J., de Sousa Fernandes, M.S., Sampaio, R.A.C., Knechtle, B., & de Souza, R.F. (2022). Acute Neuromuscular, Physiological and Performance Responses After Strength Training in Runners: A Systematic Review and Meta-Analysis. Sports Medicine – Open, 8(1), 105.

Djaoui, L., Haddad, M., Chamari, K., & Dellal, A. (2017). Monitoring training load and fatigue in soccer players with physiological markers. Physiology & Behavior, 181, 86-94.

Dupuy, O., Douzi, W, Theurot, D., Bosque,t L., & Dugué, B. (2018). An Evidence-Based Approach for Choosing Post-exercise Recovery Techniques to Reduce Markers of Muscle Damage, Soreness, Fatigue, and Inflammation: A Systematic Review With Meta-Analysis. Front Physiol, 9(403), 403.

Eckberg, D.L. (2000). Physiological basis for human autonomic rhythms. Annals of Medicine, 32(5), 341-349.

Fadel, P. (2008). Arterial baroreflex control of the peripheral vasculature in humans: rest and exercise. Med Sci Sports Exerc, 40(12), 2055-62.

Fuchs, K., Schumann, A.Y., Kuhnhold, A., Guzik, P., Piskorski, J., Schmidt, G., & Kantelhardt, J.W. (2010). Comparing analysis of heart rate and blood pressure fluctuations in healthy subjects. Proceedings Of The 6th ESGCO 2010, April 12-14, 2010, Berlin, Germany

Harris, K.D., Dashevskiy, T., Mendoza, J., Garcia, A.J., Ramirez, J.-M., & Shea-Brown, E. (2017). Different roles for inhibition in the rhythm-generating respiratory network. Journal of Neurophysiology, 118(4), 2070-2088.

Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. (1996). Circulation, 93(5), 1043-1065.

Hoffmann, B., Flatt, A.A., Silva, L.E.V., Młyńczak, M., Baranowski, R., Dziedzic, E., Werner, B., & Gąsior, J.S. (2020). A Pilot Study of the Reliability and Agreement of Heart Rate, Respiratory Rate and Short-Term Heart Rate Variability in Elite Modern Pentathlon Athletes. Diagnostics (Basel, Switzerland), 10(10).

Hunter, G.R., Fisher, G., Bryan, D.R., Borges, J.H., & Carter, S.J. (2018). Divergent Blood Pressure Response After High-Intensity Interval Exercise: A Signal of Delayed Recovery? Journal of Strength and Conditioning Research, 32(11), 3004-3010.

Goldstein, D. (2010). Adrenal responses to stress. Cell Mol Neurobiol, 30(8), 1433-40.

Grässler, B., Thielmann, B., Böckelmann, I., & Hökelmann, A. (2021) Effects of Different Training Interventions on Heart Rate Variability and Cardiovascular Health and Risk Factors in Young and Middle-Aged Adults: A Systematic Review. Front. Physiol. 12:657274.

Gronwald, T., & Hoos, O. (2020). Correlation properties of heart rate variability during endurance exercise: A systematic review. Annals of Noninvasive Electrocardiology : The Official Journal of the International Society for Holter and Noninvasive Electrocardiology, Inc, 25(1), e12697.

Guzii, O. (2019). Changes of types of autonomous regulation of a heart rhythm under the influence of intense physical loads. Scientific journal National Pedagogical Dragomanov University, 10(118), 43-9.

Guzii, O., & Romanchuk, A. (2018). Determinants of the functional state of sportsmen using heart rate variability measurements in tests with controlled respiration. Journal of Physical Education and Sport, 18(2), 715-24.

Guzii, O., & Romanchuk, A. (2017). Differentiation of hemodynamics of top athletes depending on heart rate variability after training. J Adv Med Med Res, 22(3), 1-10.

Guzii, O., & Romanchuk, A. (2017). Heart rate variability during controlled respiration after endurance training. Journal of Physical Education and Sport, 17(203), 2024-9.

Guzii, O.V., Romanchuk, A.P., & Мahlovanyy, A.V. (2020). Sensorimotor Indicators as Criteria of the Intense Physical Loads Influence on the Athlete’s Body. Ukraïnsʹkij Žurnal Medicini, Bìologìï Ta Sportu, 5(3), 351-358.

Guzii, O., & Romanchuk, A. (2021). Post-loading dynamics of beat-to-beat blood pressure variability in highly qualified athletes. Physical rehabilitation and recreational health technologies, 6(1), 5-14.

Guzii, O., Romanchuk, A., & Мahlovanyy, A. (2020). Post-loading dynamics of heart rate variability indices in highly qualified athletes in the formation of overstrains by sympathetic and parasympathetic types. Art Med, 4(16), 28-36.

Guzii, О., Romanchuk, A., Мahlovanyi, A., & Trach, V. (2019). Polyfunctional express-evaluation criteria of the sportsman organism state. J Phys Educ Sport, 19(4), 2352-8.

Guziy, O., & Romanchuk, A. (2016). Sensitivity of arterial baroreflex in the terms of body recovery after training load. Zaporozhye Medical Jour, 3(96), 24-30.

Incognito, A., Samora, M., Shepherd, A., Cartafina, R., Guimarães, G., Daher, M., et al. (2020). Arterial baroreflex regulation of muscle sympathetic single-unit activity in men: influence of resting blood pressure. Am J Physiol Heart Circ Physiol, 318(4), 937-46.

Jurasz, M., Boraczyński, M., Laskin, J.J., Kamelska-Sadowska, A.M., Podstawski, R., Jaszczur-Nowicki, J., Nowakowski, J.J., & Gronek, P. (2022). Acute Cardiorespiratory and Metabolic Responses to Incremental Cycling Exercise in Endurance- and Strength-Trained Athletes. Biology, 11(5), 643.

Kalauzi, A., Matić, Z., Platiša, M. M., & Bojić, T. (2023). Two Operational Modes of Cardio-Respiratory Coupling Revealed by Pulse-Respiration Quotient. Bioengineering, 10(2), 180.

Karemaker, J.M. (2020). Interpretation of Heart Rate Variability: The Art of Looking Through a Keyhole. Frontiers in Neuroscience, 14.

Karemaker, J., & Wesseling, K. (2008). Variability in Cardiovascular Control: The Baroreflex Reconsidered. Cardiovasc Eng, 8(1), 23-9.

Kim, T., Hur, J., Kim, S., Kim, H., Choi, B., Choe, K., Yoon, Y., & Kwon, H. (2005). Two-phase reconstruction for the assessment of left ventricular volume and function using retrospective ECG-gated MDCT: comparison with echocardiography. AJR Am J Roentg, 185(2), 319-325.

Lee, D., Kwon, W., Heo, J., & Park, J.Y. (2022). Associations between heart rate variability and brain activity during a working memory task: a preliminary electroencephalogram study on depression and anxiety disorder. Brain Sciences, 12(2), 172.

Le Meur, Y., Hausswirth, C., Natta, F., Couturier, A., Bignet, F., & Vidal, P.P. (2013). A multidisciplinary approach to overreaching detection in endurance trained athletes. Journal of Applied Physiology (Bethesda, Md. : 1985), 114(3), 411-420.

Machado, S., Cunha, M., Velasques, B., Minc, D., Teixeira, S., Domingues, C.A., Silva, J.G., Bastos, V.H., Budde, H., Cagy, M., Basile, L., Piedade, R., & Ribeiro, P. (2010). Sensorimotor integration: basic concepts, abnormalities related to movement disorders and sensorimotor training-induced cortical reorganization. Revista de Neurologia, 51(7), 427-436.

Maric, V., Ramanathan, D., & Mishra, J. (2020). Respiratory regulation interactions with neuro-cognitive circuitry. Neuroscience & Biobehavioral Reviews, 112, 95-106.

Matić, Z., Kalauzi, A., Moser, M., Platiša, M. M., Lazarević, M., & Bojić, T. (2022). Pulse respiration quotient as a measure sensitive to changes in dynamic behavior of cardiorespiratory coupling such as body posture and breathing regime. Frontiers in Physiology, 13.

Meeusen, R., Duclos, M., Foster, C., Fry, A., Gleeson, M., Nieman, D., et al. (2013). Prevention, diagnosis, and treatment of the overtraining syndrome: joint consensus statement of the European College of Sport Science and the American College of Sports Medicine. Med Sci Sport Exerc, 45(1), 186-205.

Migliaccio, G.M., Russo, L., Maric, M., & Padulo, J. (2023). Sports Performance and Breathing Rate: What Is the Connection? A Narrative Review on Breathing Strategies. Sports, 11(5), 103.

Moskvyn, V.A., & Moskvyna, N.V. (2015). Individual differences in functional asymmetry in sports. Science in Olympic sports, 2, 58-62.

Noskin, L., Rubinskiy, A., & Romanchuk, A. (2018). Indications of the Level Individual Cardiovascular and Respiratory Homeostasis Using Continuous Spiroarteriocardiorhythmography. Biomed J Sci Tech Res, 27, 6(1).

Panenko, A., Babov, K., Noskin, L., Romanchuk, O., & Pivovarov, V. (2006) Spiroarteriocardiorhythmography as a multifunctional method of research of the cardiorespiratory system in rehabilitation institutions. Kyiv; Methodological recommendations of the MHU.

Papaioannou, T.G., Protogerou, A.D., Stamatelopoulos, K.S., Alexandraki, K.I., Vrachatis, D., Argyris, A., et al. (2020). Very-short-term blood pressure variability: complexities and challenges. Blood Press Monit, 25(5), 300.

Penáz, J. (1992). Criteria for set point estimation in the volume clamp method of blood pressure measurement. Physiol Res, 41(1), 5-10. PMID: 1610779

Pinna, G., Maestr, R., & Mortara, A. (1996). Estimation of arterial blood pressure variability by spectral analysis: comparison between Finapres and invasive measurements. Physiol Meas, 17(3), 147-69.

Pivovarov, V.V. (2006). The computerized motion meter. Biomedical Engineering, 40(2), 74-77.

Pivovarov, V.V. (2006). A spiroarteriocardiorhythmograph. Meditsinskaia Tekhnika, 1, 38-40.

Qammar, N.W., Orinaitė, U., Šiaučiūnaitė, V., Vainoras, A., Šakalytė, G., & Ragulskis, M. (2022). The Complexity of the Arterial Blood Pressure Regulation during the Stress Test. Diagnostics, 12(5), 1256.

Romanchuk, A. (2007). The question sensorimotor reactions typing in athletes. Sports science bulletin, 2, 38-42.

Romanchuk, A. (2013). The Complex Approach to a Multipurpose Estimation of a Sportsmen Condition. In My. Karganov (Ed.), Polysystemic approach to school, sport and environment medicine (pp. 39–57). OMICS Publishing Group.

Romanchuk, O., Guzii, O., Mahlovanyi, A., Sereda, S., & Ostrovskyy, M. (2023). Comparative features of the morphometric correlates of blood pressure response to physical load of qualified athletes in some sports. Physical rehabilitation and recreational health technologies, 8(1), 3-12.

Romanchuk, A.P., Guzii, O.V., & Maglyovanyi, A.V. (2021). Comparative Characteristics of Sensorimotor Reactions of Highly Qualified Athletes with Different Types of Heart Rate Regulation. Ukraïnsʹkij Žurnal Medicini, Bìologìï Ta Sportu, 6(5), 456-464.

Romanchuk, A.P, Guzii, O.V, Maglyovanyi, A.V, & Trach, V.M (2021). Post-loading dynamics of beat-to-beat blood pressure variability in highly trained athletes during sympathetic and parasympathetic overstrain formation. Journal of Physical Education and Sport, 21(5), 2622-2632.

Romanchuk, O.P., & Guzii, O.V. (2020). The central level of sensorimotor regulation of athletes during the formation of overstrain of the cardiovascular system. Physical Rehabilitation and Recreational Health Technologies, 5(1), 41-51.

Romanchuk, O., & Guzii, O. (2020). Sensorimotor Criteria for the Formation of the Autonomic Overstrain of the Athletes’ Cardiovascular System. Int J Sci Ann, 3(1), 46-53.

Romanchuk, O., & Guzii, O. (2020). Peculiarities of Changes in Respiratory Variability under the Influence of Training Load in Athletes with Cardiovascular Overstrain by Sympathetic Type. Int J Educ Sci, 3(2), 54.

Romanchuk, A., & Guzii, O. (2020). Variability and Pattern of Spontaneous Respiration in Different Types of Cardiac Rhythm Regulation of Highly Trained Athletes. Int J Hum Mov Sport Sci, 8(6), 483-93.

Romanchuk, O., & Pisaruk V. (2013). Change of central hemodynamics of qualified athletes for testing the use of controlled breathing and evaluation. Pedagog Psychol medical-biological Probl Phys Train Sport, 11, 77-84.

Rosei, E.A., Chiarini, G., & Rizzoni, D. (2020). How important is blood pressure variability? Eur Heart J Suppl, 22(SE), E1-6.

Saw, A.E., Main, L.C., & Gastin, P.B. (2016). Monitoring the athlete training response: subjective self-reported measures trump commonly used objective measures: a systematic review. British Journal of Sports Medicine, 50(5), 281-291.

Seiler, S., Haugen, O., & Kuffel, E. (2007). Autonomic Recovery after Exercise in Trained Athletes. Medicine & Science in Sports & Exercise, 39(8), 1366–1373.

Skyba, O., Pshenychna, L., & Ustymenko-Kosorich, O. (2017). Vegetative status of sportsmen depending on the level of their sensorimotor reaction. Journal of Physical Education and Sport, 17(2), 748-752.

Shams, S., LeVan, P., & Chen, J.J. (2021). The neuronal associations of respiratory-volume variability in the resting state. NeuroImage, 230, 117783.

Shlyk, N. (2016). Management of athletic training taking into account individual heart rate variability characteristics. Hum Physiol, 42(6), 655-64.

Stanley, J., Peake, J.M., & Buchheit, M. (2013). Cardiac parasympathetic reactivation following exercise: implications for training prescription. Sports Medicine (Auckland, N.Z.), 43(12), 1259-1277.

Swart, A., & Constantinou, D. (2023). The effects of a 3-day mountain bike cycling race on the autonomic nervous system (ANS) and heart rate variability in amateur cyclists: a prospective quantitative research design. BMC Sports Science, Medicine and Rehabilitation, 15(1), 2.

Tipton, M.J., Harper, A., Paton, J.F.R., & Costello, J.T. (2017). The human ventilatory response to stress: rate or depth? The Journal of Physiology, 595(17), 5729-5752.

Tirosh, E., Hijazi, B., Karsaks, E., & Schnell, I. (2022). The Effect of Breathing Route on Heart Rate Variability – A within Subject Comparative Study. Journal of Environmental Protection, 13(06), 398-410.

Zohdi, H., Scholkmann, F., & Wolf, U. (2020). Frontal cerebral oxygenation asymmetry: intersubject variability and dependence on systemic physiology, season, and time of day. Neurophotonics, 7(02), 1.

van Hattum, J.C., Verwijs, S.M., Senden, P.J., Spies, J.L., Boekholdt, S.M., Groenink, M., Panhuyzen-Goedkoop, N.M., Willems, A.R., Knobbe, I., Blom, N. A., Wijne, C.A.C.M., Reurink, G., van der Crabben, S.N., Bijsterveld, N.R., Verhagen, E.A.L.M., Pinto, Y.M., Wilde, A.A.M., & Jørstad, H.T. (2022). The Sports Cardiology Team: Personalizing Athlete Care Through a Comprehensive, Multidisciplinary Approach. Mayo Clinic Proceedings: Innovations, Quality & Outcomes, 6(6), 525-535.

Volpes, G., Barà, C., Busacca, A., Stivala, S., Javorka, M., Faes, L., & Pernice, R. (2022). Feasibility of Ultra-Short-Term Analysis of Heart Rate and Systolic Arterial Pressure Variability at Rest and during Stress via Time-Domain and Entropy-Based Measures. Sensors, 22(23), 9149.

Watanabe, T., Yoshioka, K., Matsushita, K., & Ishihara, S. (2021). Modulation of sensorimotor cortical oscillations in athletes with yips. Scientific Reports, 11(1), 10376.

Wesseling, K., Karemaker, J., Castiglioni, P., Toader, E., Cividjian, A., Settels, J., Quintin, L., & Westerhof, B. (2017). Validity and variability of xBRS: instantaneous cardiac baroreflex sensitivity. Physiol Rep, (22), 13509.




How to Cite

Oksana Guzii, Anatolii Mahlovanyi, & Oleksandr Romanchuk. (2023). Multifunctional changes in the athletes’ body during the formation of autonomic regulations’ overstrain under the influence of training load. Physical Rehabilitation and Recreational Health Technologies, 8(2), 91–104.



Original research article